Consider the following property of a topological group G: every continuous affine G-action on a Hilbert space with a bounded orbit has a fixed point. We prove that this property characterizes amenability for locally compact a-compact groups (e.g., countabl ...
For Figa-Talamanca-Herz algebras A(p)(G), 1 < p < infinity, of a locally compact group G and a closed subgroup H of G, we prove an injection theorem for local Ditkin sets. ...
We give a complete characterization of the locally compact groups that are nonelementary Gromov-hyperbolic and amenable. They coincide with the class of mapping tori of discrete or continuous one-parameter groups of compacting automorphisms. We moreover gi ...
We introduce a relative fixed point property for subgroups of a locally compact group, which we call relative amenability. It is a priori weaker than amenability. We establish equivalent conditions, related among others to a problem studied by Reiter in 19 ...
We examine how, in prime characteristic p, the group of endotrivial modules of a finite group G and the group of endotrivial modules of a quotient of G modulo a normal subgroup of order prime to p are related. There is always an inflation map, but examples ...
We investigate how probability tools can be useful to study representations of non-amenable groups. A suitable notion of "probabilistic subgroup" is proposed for locally compact groups, and is valuable to induction of representations. Nonamenable groups ad ...
Our main goal is to determine, under certain restrictions, the maximal closed connected subgroups of simple linear algebraic groups containing a regular torus. We call a torus regular if its centralizer is abelian. We also obtain some results of independen ...
Is the cohomology of the classifying space of a p-compact group, with Noetherian twisted coefficients, a Noetherian module? In this paper we provide, over the ring of p-adic integers, such a generalization to p-compact groups of the Evens-Venkov Theorem. W ...
We prove formulas for power moments for point counts of elliptic curves over a finite field k such that the groups of k-points of the curves contain a chosen subgroup. These formulas express the moments in terms of traces of Hecke operators for certain con ...
It is a well-known open problem since the 1970s whether a finitely generated perfect group can be normally generated by a single element or not. We prove that the topological version of this problem has an affirmative answer as long as we exclude infinite ...