Publication

Generalized Sampling: Stability and Performance Analysis

Michaël Unser
1997
Article
Résumé

Generalized sampling provides a general mechanism for recovering an unknown input function f(x)Hf(x) \in H from the samples of the responses of m linear shift-invariant systems sampled at 1 ⁄ mth the reconstruction rate. The system can be designed to perform a projection of f(x) onto the reconstruction subspace V(φ)=span{φ(xk)}kZV(\varphi) = span \{\varphi(x - k)\} _{ k \in Z } ; for example, the family of bandlimited signals with φ(x)=sinc(x)\varphi(x) = sinc(x). This implies that the reconstruction will be perfect when the input signal is included in V(φ): the traditional framework of Papoulis' generalized sampling theory. Otherwise, one recovers a signal approximation f (x)V(φ) f ^{ ~ } (x) \in V(\varphi) that is consistent with f(x) in the sense that it produces the same measurements. To characterize the stability of the algorithm, we prove that the dual synthesis functions that appear in the generalized sampling reconstruction formula constitute a Riesz basis of V(φ), and we use the corresponding Riesz bounds to define the condition number of the system. We then use these results to analyze the stability of various instances of interlaced and derivative sampling. Next, we consider the issue of performance, which becomes pertinent once we have extended the applicability of the method to arbitrary input functions, that is, when H is considerably larger than V(φ), and the reconstruction is no longer exact. By deriving general error bounds for projectors, we are able to show that the generalized sampling solution is essentially equivalent to the optimal minimum error approximation (orthogonal projection), which is generally not accessible. We then perform a detailed analysis for the case in which the analysis filters are in L2L _{ 2 } and determine all relevant bound constants explicitly. Finally, we use an interlaced sampling example to illustrate these various calculations.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.