Système cristallin orthorhombiqueEn cristallographie, le système cristallin orthorhombique est l'un des sept systèmes cristallins dans lesquels on classe les cristaux selon leurs propriétés de symétrie. Tout cristal orthorhombique possède comme opération de symétrie une rotation binaire ou une réflexion, voire les deux, selon trois directions perpendiculaires qui sont choisies comme axes du référentiel.
Analyse harmonique (mathématiques)thumb|upright=1.2|Analyseur harmonique mécanique de Lord Kelvin datant de 1878. L'analyse harmonique est la branche des mathématiques qui étudie la représentation des fonctions ou des signaux comme superposition d'ondes de base. Elle approfondit et généralise les notions de série de Fourier et de transformée de Fourier. Les ondes de base s'appellent les harmoniques, d'où le nom de la discipline.
Diagramme de VoronoïEn mathématiques, un diagramme de Voronoï est un pavage (découpage) du plan en cellules (régions adjacentes) à partir d'un ensemble discret de points appelés « germes ». Chaque cellule enferme un seul germe, et forme l'ensemble des points du plan plus proches de ce germe que d'aucun autre. La cellule représente en quelque sorte la « zone d'influence » du germe. Le diagramme doit son nom au mathématicien russe Gueorgui Voronoï (1868-1908). Le découpage est aussi appelé décomposition de Voronoï, partition de Voronoï ou tessellation de Dirichlet.
Domain (mathematical analysis)In mathematical analysis, a domain or region is a non-empty connected open set in a topological space, in particular any non-empty connected open subset of the real coordinate space Rn or the complex coordinate space Cn. A connected open subset of coordinate space is frequently used for the domain of a function, but in general, functions may be defined on sets that are not topological spaces.
Pavage hexagonalLe pavage hexagonal est, en géométrie, un pavage du plan euclidien constitué d'hexagones réguliers. C'est l'un des trois pavages réguliers du plan euclidien, avec le pavage carré et le pavage triangulaire. Le pavage hexagonal possède un symbole de Schläfli de {6,3}, signifiant que chaque sommet est entouré par 3 hexagones. Le Théorème du nid d'abeille énonce que le pavage hexagonal régulier est la partition du plan en surfaces égales ayant le plus petit périmètre.
Polynômethumb|Courbe représentative d'une fonction cubique. En mathématiques, un polynôme est une expression formée uniquement de produits et de sommes de constantes et d'indéterminées, habituellement notées X, Y, Z... Ces objets sont largement utilisés en pratique, ne serait-ce que parce qu'ils donnent localement une valeur approchée de toute fonction dérivable (voir l'article Développement limité) et permettent de représenter des formes lisses (voir l'article Courbe de Bézier, décrivant un cas particulier de fonction polynomiale).
Centroidal Voronoi tessellationIn geometry, a centroidal Voronoi tessellation (CVT) is a special type of Voronoi tessellation in which the generating point of each Voronoi cell is also its centroid (center of mass). It can be viewed as an optimal partition corresponding to an optimal distribution of generators. A number of algorithms can be used to generate centroidal Voronoi tessellations, including Lloyd's algorithm for K-means clustering or Quasi-Newton methods like BFGS.
Fonction caractéristique (théorie des ensembles)En mathématiques, une fonction caractéristique, ou fonction indicatrice, est une fonction définie sur un ensemble E qui explicite l’appartenance ou non à un sous-ensemble F de E de tout élément de E. Formellement, la fonction caractéristique d’un sous-ensemble F d’un ensemble E est une fonction : D'autres notations souvent employées pour la fonction caractéristique de F sont 1 et 1, voire I (i majuscule). Le terme de fonction indicatrice est parfois utilisé pour fonction caractéristique.
Step functionIn mathematics, a function on the real numbers is called a step function if it can be written as a finite linear combination of indicator functions of intervals. Informally speaking, a step function is a piecewise constant function having only finitely many pieces. A function is called a step function if it can be written as for all real numbers where , are real numbers, are intervals, and is the indicator function of : In this definition, the intervals can be assumed to have the following two properties: The intervals are pairwise disjoint: for The union of the intervals is the entire real line: Indeed, if that is not the case to start with, a different set of intervals can be picked for which these assumptions hold.
Arithmétique multiprécisionL'arithmétique multiprécision désigne l'ensemble des techniques mises en œuvre pour manipuler dans un programme informatique des nombres (entiers, rationnels, ou flottants principalement) de taille arbitraire. Il s'agit d'une branche de l'arithmétique des ordinateurs. On oppose l'arithmétique multi-précision à l'arithmétique en simple ou double précision, comme celle spécifiée par le standard IEEE 754 pour les nombres flottants.