En mathématiques, un diagramme de Voronoï est un pavage (découpage) du plan en cellules (régions adjacentes) à partir d'un ensemble discret de points appelés « germes ». Chaque cellule enferme un seul germe, et forme l'ensemble des points du plan plus proches de ce germe que d'aucun autre. La cellule représente en quelque sorte la « zone d'influence » du germe. Le diagramme doit son nom au mathématicien russe Gueorgui Voronoï (1868-1908). Le découpage est aussi appelé décomposition de Voronoï, partition de Voronoï ou tessellation de Dirichlet. De manière plus générale, il représente une décomposition d’un espace métrique en cellules (régions adjacentes), déterminée par les distances à un ensemble discret d’objets de l’espace, en général un ensemble discret de points. Dans le plan les cellules sont appelées polygones de Voronoï ou polygones de Thiessen, et dans l'espace polyèdres de Voronoï. On peut faire remonter l’usage informel des diagrammes de Voronoï jusqu'à Descartes en 1644 dans Principia philosophiae comme illustration de phénomène astronomique . Dirichlet a utilisé des diagrammes de Voronoï en dimension 2 ou 3 dans son étude des formes quadratiques en 1850 . En 1854, le médecin britannique John Snow a utilisé le diagramme de Voronoï pour montrer que la majorité des personnes mortes dans l’épidémie de choléra de Soho se trouvaient dans la cellule de la pompe à eau de Broad Street, donc qu'ils vivaient plus près de cette pompe que de n’importe quelle autre pompe. Il a ainsi démontré que le foyer de l'infection était cette pompe. Les diagrammes de Voronoï portent le nom du mathématicien russe Georgy Fedoseevich Voronoï (ou Voronoy) qui a défini et étudié le cas général en dimension n en 1908. Les diagrammes de Voronoï qui sont utilisés en géophysique et en météorologie pour analyser des données de distributions spatiales (comme les mesures de chutes de pluie) sont appelés polygones de Thiessen du nom du météorologiste américain . On se place dans le plan affine .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
MATH-504: Integer optimisation
The course aims to introduce the basic concepts and results of integer optimization with special emphasis on algorithmic problems on lattices that have proved to be important in theoretical computer s
EE-548: Audio engineering
This lecture is oriented towards the study of audio engineering, room acoustics, sound propagation, and sound radiation from sources and acoustic antennas. The learning outcomes will be the techniques
Séances de cours associées (23)
Problème de vecteur le plus proche: cellules de Voronoi
Explore le problème de vecteur le plus proche dans les réseaux et le rôle des cellules de Voronoi dans la détermination du vecteur le plus proche.
Problème de vecteur le plus proche: cellules de Voronoi
Explore le problème vectoriel le plus proche et les cellules Voronoi dans les algorithmes de réduction de réseau.
Navigation globale : Planification de parcours
Couvre la navigation globale, les algorithmes de planification des chemins, la décomposition des cellules, les méthodes de champs potentiels et l'optimisation des chemins basée sur la stigmergie.
Afficher plus
Publications associées (51)
Unités associées (1)
Concepts associés (21)
Centroidal Voronoi tessellation
In geometry, a centroidal Voronoi tessellation (CVT) is a special type of Voronoi tessellation in which the generating point of each Voronoi cell is also its centroid (center of mass). It can be viewed as an optimal partition corresponding to an optimal distribution of generators. A number of algorithms can be used to generate centroidal Voronoi tessellations, including Lloyd's algorithm for K-means clustering or Quasi-Newton methods like BFGS.
Réseau (géométrie)
En mathématiques, un réseau d'un espace (vectoriel) euclidien est un sous-groupe discret de l’espace, de rang fini n. Par exemple, les vecteurs de Rn à coordonnées entières dans une base forment un réseau de Rn. Cette notion permet de décrire mathématiquement des maillages, comme celui correspondant à la figure 1. thumb|Fig. 1. Un réseau est un ensemble discret disposé dans un espace vectoriel réel de dimension finie de manière régulière, au sens où la différence de deux éléments du réseau est encore élément du réseau.
Pavage du plan
thumb|Pavage constitué de triangles équilatéraux et d'hexagones, dit pavage trihexagonal. thumb|Pavage hexagonal de tomettes provençales en terre cuite. Un pavage du plan est un ensemble de portions du plan, par exemple des polygones, dont l'union est le plan tout entier, sans recouvrement. Plus précisément, c'est une partition du plan euclidien par des éléments d'un ensemble fini, appelés « carreaux » (plus précisément, ce sont des compacts d’intérieur non vide).
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.