Résumé
En mathématiques, un diagramme de Voronoï est un pavage (découpage) du plan en cellules (régions adjacentes) à partir d'un ensemble discret de points appelés « germes ». Chaque cellule enferme un seul germe, et forme l'ensemble des points du plan plus proches de ce germe que d'aucun autre. La cellule représente en quelque sorte la « zone d'influence » du germe. Le diagramme doit son nom au mathématicien russe Gueorgui Voronoï (1868-1908). Le découpage est aussi appelé décomposition de Voronoï, partition de Voronoï ou tessellation de Dirichlet. De manière plus générale, il représente une décomposition d’un espace métrique en cellules (régions adjacentes), déterminée par les distances à un ensemble discret d’objets de l’espace, en général un ensemble discret de points. Dans le plan les cellules sont appelées polygones de Voronoï ou polygones de Thiessen, et dans l'espace polyèdres de Voronoï. On peut faire remonter l’usage informel des diagrammes de Voronoï jusqu'à Descartes en 1644 dans Principia philosophiae comme illustration de phénomène astronomique . Dirichlet a utilisé des diagrammes de Voronoï en dimension 2 ou 3 dans son étude des formes quadratiques en 1850 . En 1854, le médecin britannique John Snow a utilisé le diagramme de Voronoï pour montrer que la majorité des personnes mortes dans l’épidémie de choléra de Soho se trouvaient dans la cellule de la pompe à eau de Broad Street, donc qu'ils vivaient plus près de cette pompe que de n’importe quelle autre pompe. Il a ainsi démontré que le foyer de l'infection était cette pompe. Les diagrammes de Voronoï portent le nom du mathématicien russe Georgy Fedoseevich Voronoï (ou Voronoy) qui a défini et étudié le cas général en dimension n en 1908. Les diagrammes de Voronoï qui sont utilisés en géophysique et en météorologie pour analyser des données de distributions spatiales (comme les mesures de chutes de pluie) sont appelés polygones de Thiessen du nom du météorologiste américain . On se place dans le plan affine .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.