The state-resolved reactivity of CH4 in its totally symmetric C-H stretch vibration (nu(1)) has been measured on a Ni(100) surface. Methane molecules were accelerated to kinetic energies of 49 and 63.5 kJ/mol in a molecular beam and vibrationally excited to nu(1) by stimulated Raman pumping before surface impact at normal incidence. The reactivity of the symmetric-stretch excited CH4 is about an order of magnitude higher than that of methane excited to the antisymmetric stretch (nu(3)) reported by Juurlink et al. [Phys. Rev. Lett. 83, 868 (1999)] and is similar to that we have previously observed for the excitation of the first overtone (2 nu(3)). The difference between the state-resolved reactivity for nu(1) and nu(3) is consistent with predictions of a vibrationally adiabatic model of the methane reaction dynamics and indicates that statistical models cannot correctly describe the chemisorption of CH4 on nickel.
Christophe Marcel Georges Galland, Konstantin Malchow, Wen Chen, Sakthi Priya Amirtharaj