n this article, we share our vision for a future nanofactory, where plasmonic trapping is used to control the different manufacturing steps associated with the transformation of initial nanostructures to produce complex compounds. All the different functions existing in a traditional factory can be translated at the nanoscale using the optical forces produced by plasmonic nanostructures. A detailed knowledge of optical forces in plasmonic nanostructures is however essential to design such a nanofactory. To this end, we review the numerical techniques for computing optical forces on nanostructures immersed in a strong optical field and show under which conditions approximate solutions, like the dipole approximation, can be used in a satisfactory manner. Internal optical forces on realistic plasmonic antennas are investigated and the reconfiguration of a Fano-resonant plasmonic system using such internal forces is also studied in detail.
Farhad Rachidi-Haeri, Marcos Rubinstein, Elias Per Joachim Le Boudec, Nicolas Mora Parra, Chaouki Kasmi, Emanuela Radici
Mario Paolone, André Hodder, Lucien André Félicien Pierrejean, Simone Rametti
Daniel Kressner, Axel Elie Joseph Séguin, Gianluca Ceruti