Théorème de HallEn mathématiques, le théorème de Hall ou lemme des mariages est un résultat combinatoire qui donne une condition nécessaire et suffisante, sur une famille d'ensembles finis, pour qu'il soit possible de choisir des éléments distincts, un par ensemble. Il a été démontré par Philip Hall et a été à l'origine de la théorie du couplage dans les graphes. On appelle système de représentants distincts d'une suite de n ensembles finis , toute suite de n éléments distincts tels que pour tout , appartienne à .
Merge algorithmMerge algorithms are a family of algorithms that take multiple sorted lists as input and produce a single list as output, containing all the elements of the inputs lists in sorted order. These algorithms are used as subroutines in various sorting algorithms, most famously merge sort. The merge algorithm plays a critical role in the merge sort algorithm, a comparison-based sorting algorithm.
Geometric latticeIn the mathematics of matroids and lattices, a geometric lattice is a finite atomistic semimodular lattice, and a matroid lattice is an atomistic semimodular lattice without the assumption of finiteness. Geometric lattices and matroid lattices, respectively, form the lattices of flats of finite, or finite and infinite, matroids, and every geometric or matroid lattice comes from a matroid in this way. A lattice is a poset in which any two elements and have both a least upper bound, called the join or supremum, denoted by , and a greatest lower bound, called the meet or infimum, denoted by .
Algorithme d'énumérationLes algorithmes d’énumération sont des algorithmes qui ont pour but de calculer ou afficher une liste de toutes les réponses à un problème donné ; alors que les algorithmes « classiques » cherchent plutôt une solution (problèmes d’optimisation) ou à tester la vérité d’une affirmation (problèmes de décision). Par exemple, un algorithme listant toutes les cliques d’un graphe est un algorithme d’énumération. Cette distinction est faite pour pouvoir construire des classes de complexité propres aux problèmes d’énumération.
Monomial basisIn mathematics the monomial basis of a polynomial ring is its basis (as a vector space or free module over the field or ring of coefficients) that consists of all monomials. The monomials form a basis because every polynomial may be uniquely written as a finite linear combination of monomials (this is an immediate consequence of the definition of a polynomial). The polynomial ring K[x] of univariate polynomials over a field K is a K-vector space, which has as an (infinite) basis.