A class of multi-iterate methods to solve systems of nonlinear equations
Publications associées (44)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This thesis focuses on the numerical analysis of partial differential equations (PDEs) with an emphasis on first and second-order fully nonlinear PDEs. The main goal is the design of numerical methods to solve a variety of equations such as orthogonal maps ...
Iterative substructuring Domain Decomposition (DD) methods have been extensively studied, and they are usually associated with nonoverlapping decompositions. It is less known that classical overlapping DD methods can also be formulated in substructured for ...
For a high dimensional problem, a randomized Gram-Schmidt (RGS) algorithm is beneficial in computational costs as well as numerical stability. We apply this dimension reduction technique by random sketching to Krylov subspace methods, e.g. to the generaliz ...
We consider a least-squares/relaxation finite element method for the numerical solution of the prescribed Jacobian equation. We look for its solution via a least-squares approach. We introduce a relaxation algorithm that decouples this least-squares proble ...
Wave phenomena manifest in nature as electromagnetic waves, acoustic waves, and gravitational waves among others.Their descriptions as partial differential equations in electromagnetics, acoustics, and fluid dynamics are ubiquitous in science and engineeri ...
Motivated by the recent successes of neural networks that have the ability to fit the data perfectly \emph{and} generalize well, we study the noiseless model in the fundamental least-squares setup. We assume that an optimum predictor fits perfectly inputs ...
This article presents the outcomes of a large project towards the investigation of the lateral performance of full-scale industrialized light-frame wooden diaphragms. 10 full-scale diaphragms of 3.6 m by 2.4 m were tested under in-plane lateral loading (mo ...
This paper considers the multi-agent linear least-squares problem in a server-agent network architecture. The system comprises multiple agents, each with a set of local data points. The agents are connected to a server, and there is no inter-agent communic ...
Unstable periodic orbits are believed to underpin the dynamics of turbulence, but by their nature are hard to find computationally. We present a family of methods to converge such unstable periodic orbits for the incompressible Navier-Stokes equations, bas ...
Quasi-Newton (qN) techniques approximate the Newton step by estimating the Hessian using the so-called secant equations. Some of these methods compute the Hessian using several secant equations but produce non-symmetric updates. Other quasi-Newton schemes, ...