With the deregulation of the electricity and telecommunications markets, a great deal of new operators providing some innovative services have appeared. In the telecommunications' field, the promise of broadband Internet access with easy installation procedure at low cost may help to win new customers. The Power Line Communications (PLC) technology is a way to fulfil this function. PLC uses the low voltage (LV) and the medium voltage (MV) networks as communication support. It consists in an additional signal carrying data information and superimposed to the 50 Hz power wave. As PLC is easy to install, it can be used to extend the Internet coverage to areas that are still badly covered by the other broadband technologies, or to provide high speed Internet access to every power socket of a building. This thesis, done as a part of research project called Digital Power Line Access, is devoted to the study of electromagnetic compatibility (EMC) aspects involved with the PLC. There are still a certain number of problems due to the fact that PLC, which is a quite recent technology, has not been regulated yet. Among these problems, all the aspects associated with the radiation created by the transmission of PLC signals over unshielded conductors and their potential disturbances are very significant. The aim of this thesis is the analysis of PLC data transmission over the low voltage network and the related EMC problems, mainly the radiation due to the transmission of PLC signals. The measurement and the analysis of these radiations lead us to develop a method to reduce these radiations. The mitigation of radiation created by the use of PLC within buildings is still an important EMC challenge, because there are no possibilities for network conditioning. The first two chapters of this thesis present a state of the art of PLC, its regulation and the related EMC problems. The second chapter describes the working of PLC and emphasizes the hostile nature of its environment. The problems (filtering, attenuation, generation of noise,...) caused by the use of a signal in the [1 – 30 MHz] band over a channel designed for a 50 Hz power wave are presented. On the other hand, the various technologies used to allow the PLC to work (suitable modulation scheme, use of repeater,...) are illustrated. An analysis of the different PLC concepts and of the successful and unfruitful commercial deployment ends this chapter. In the third chapter, we present the technical criterion (use of the PLC as a multi-purpose port: as a main port and as a telecommunication port) that we have to consider and the evolution of the conducted and radiated limits that we have to respect. The pollution of the radio amateur band, which could be the result of a massive deployment of PLC, is the subject of tremendous discussions and proves that if according to some persons the current limits are too permissive, for the PLC manufacturer they are already too restrictive. The coexistence of the PLC wit
Alexandre Schmid, Mehdi Saberi