Boîte quantiqueUne boîte quantique ou point quantique, aussi connu sous son appellation anglophone de quantum dot, est une nanostructure de semi-conducteurs. De par sa taille et ses caractéristiques, elle se comporte comme un puits de potentiel qui confine les électrons (et les trous) dans les trois dimensions de l'espace, dans une région d'une taille de l'ordre de la longueur d'onde des électrons (longueur d'onde de De Broglie), soit quelques dizaines de nanomètres dans un semi-conducteur.
Couplage scalaireLe couplage scalaire, noté J et aussi appelé couplage dipôle-dipôle indirect ou juste couplage, est une interaction entre plusieurs spins à travers les liaisons chimiques. C'est une interaction indirecte entre deux spins nucléaires qui provient des interactions hyperfines entre les noyaux et la densité électronique locale et provoque un éclatement du signal RMN. Le couplage scalaire contient des informations sur la distance à travers les liaisons chimiques et les angles entre ces liaisons.
Chimie quantiqueLa chimie quantique est une branche de la chimie théorique qui applique la mécanique quantique aux systèmes moléculaires pour étudier les processus et les propriétés chimiques. Le comportement électronique et nucléaire des molécules étant responsable des propriétés chimiques, il ne peut être décrit adéquatement qu'à partir de l'équation du mouvement quantique (équation de Schrödinger) et des autres postulats fondamentaux de la mécanique quantique. Cette nécessité a motivé le développement de concepts (notamment orbitale moléculaire.
Groupe de symétrieLe groupe de symétrie, ou groupe des isométries, d'un objet (, signal, etc.) est le groupe de toutes les isométries sous lesquelles cet objet est globalement invariant, l'opération de ce groupe étant la composition. C'est un sous-groupe du groupe euclidien, qui est le groupe des isométries de l'espace affine euclidien ambiant. (Si cela n'est pas indiqué, nous considérons ici les groupes de symétrie en géométrie euclidienne, mais le concept peut aussi être étudié dans des contextes plus larges, voir ci-dessous.
Imagerie par résonance magnétiqueL'imagerie par résonance magnétique (IRM) est une technique d' permettant d'obtenir des vues en deux ou en trois dimensions de l'intérieur du corps de façon non invasive avec une résolution en contraste relativement élevée. L'IRM repose sur le principe de la résonance magnétique nucléaire (RMN) qui utilise les propriétés quantiques des noyaux atomiques pour la spectroscopie en analyse chimique. L'IRM nécessite un champ magnétique puissant et stable produit par un aimant supraconducteur qui crée une magnétisation des tissus par alignement des moments magnétiques de spin.
Histoire de la mécanique quantiquethumb|Le congrès Solvay de 1927, année charnière dans le passage des théories dites semi-classiques aux théories quantiques proprement dites. L'histoire de la mécanique quantique commence traditionnellement avec le problème de la catastrophe ultraviolette et sa résolution en 1900 par l'hypothèse de Max Planck stipulant que tout système atomique irradiant de l'énergie peut être divisé en « éléments d'énergie » discrets liés à la constante h qui, depuis, porte son nom (constante de Planck).
Turing reductionIn computability theory, a Turing reduction from a decision problem to a decision problem is an oracle machine which decides problem given an oracle for (Rogers 1967, Soare 1987). It can be understood as an algorithm that could be used to solve if it had available to it a subroutine for solving . The concept can be analogously applied to function problems. If a Turing reduction from to exists, then every algorithm for can be used to produce an algorithm for , by inserting the algorithm for at each place where the oracle machine computing queries the oracle for .
Dégénérescence (physique quantique)En physique quantique, la dégénérescence est le fait pour plusieurs états quantiques distincts de se retrouver au même niveau d'énergie. Un niveau d'énergie est dit dégénéré s'il correspond à plusieurs états distincts d'un atome, molécule ou autre système quantique. Le nombre d'états différents qui correspond à un niveau donné est dit son degré de dégénérescence. Mathématiquement, la dégénérescence est décrite par un opérateur hamiltonien ayant plusieurs fonctions propres avec la même valeur propre.
Symmetry in mathematicsSymmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations. Given a structured object X of any sort, a symmetry is a mapping of the object onto itself which preserves the structure. This can occur in many ways; for example, if X is a set with no additional structure, a symmetry is a bijective map from the set to itself, giving rise to permutation groups.
Substructure (mathematics)In mathematical logic, an (induced) substructure or (induced) subalgebra is a structure whose domain is a subset of that of a bigger structure, and whose functions and relations are restricted to the substructure's domain. Some examples of subalgebras are subgroups, submonoids, subrings, subfields, subalgebras of algebras over a field, or induced subgraphs. Shifting the point of view, the larger structure is called an extension or a superstructure of its substructure.