Publication

A System for the Off-Line Recognition of Handwritten Text

1994
Rapport ou document de travail
Résumé

A new system for the recognition of handwritten text is described. The system goes from raw, binary scanned images of census forms to ASCII transcriptions of the fields contained within the forms. The first step is to locate and extract the handwritten input from the forms. Then, a large number of character subimages are extracted and individually classified using a MLP (Multi-Layer Perceptron). A Viterbi-like algorithm is used to assemble the individual classified character subimages into optimal interpretations of an input string, taking into account both the quality of the overall segmentation and the degree to which each character subimage of the segmentation matches a character model. The system uses two different statistical language models, one based on a phrase dictionary and the other based on a simple word grammar. Hypotheses from recognition based on each language model are integrated using a decision tree classifier. Results from the application of the system to the recognition of handwritten responses on U.S. census forms are reported.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.