Circuit booléenvignette|Exemple circuit booléen à deux entrées et une sortie. Le circuit contient 3 portes logique. En théorie de la complexité, un circuit booléen est un modèle de calcul constitué de portes logiques (fonctions logiques) reliées entre elles. C'est une façon de représenter une fonction booléenne. Un circuit booléen peut être utilisé pour reconnaître un langage formel, c'est-à-dire décider si un mot appartient ou non à un langage particulier. Les caractéristiques des circuits qui reconnaissent un langage permettent de définir (ou redéfinir) des classes de complexité.
Réseau de neurones à propagation avantUn réseau de neurones à propagation avant, en anglais feedforward neural network, est un réseau de neurones artificiels acyclique, se distinguant ainsi des réseaux de neurones récurrents. Le plus connu est le perceptron multicouche qui est une extension du premier réseau de neurones artificiel, le perceptron inventé en 1957 par Frank Rosenblatt. vignette|Réseau de neurones à propagation avant Le réseau de neurones à propagation avant est le premier type de réseau neuronal artificiel conçu. C'est aussi le plus simple.
Théorème d'approximation universelleDans la théorie mathématique des réseaux de neurones artificiels, le théorème d'approximation universelle indique qu'un réseau à propagation avant d'une seule couche cachée contenant un nombre fini de neurones (c'est-à-dire, un perceptron multicouche) peut approximer des fonctions continues sur des sous-ensembles compacts de Rn. Une des premières versions du cas avec largeur arbitraire a été prouvé par George Cybenko en 1989 pour des fonctions d'activation sigmoïdes.
Neurone formelthumb|Représentation d'un neurone formel (ou logique). Un neurone formel, parfois appelé neurone de McCulloch-Pitts, est une représentation mathématique et informatique d'un neurone biologique. Le neurone formel possède généralement plusieurs entrées et une sortie qui correspondent respectivement aux dendrites et au cône d'émergence du neurone biologique (point de départ de l'axone). Les actions excitatrices et inhibitrices des synapses sont représentées, la plupart du temps, par des coefficients numériques (les poids synaptiques) associés aux entrées.
Climate as complex networksThe field of complex networks has emerged as an important area of science to generate novel insights into nature of complex systems The application of network theory to climate science is a young and emerging field. To identify and analyze patterns in global climate, scientists model climate data as complex networks. Unlike most real-world networks where nodes and edges are well defined, in climate networks, nodes are identified as the sites in a spatial grid of the underlying global climate data set, which can be represented at various resolutions.
Réseau complexeEn théorie des graphes, un réseau complexe est un réseau possédant une architecture et une topologie complexe et irrégulière. Comme tous les réseaux, ils sont composés de nœuds (ou sommets ou points) représentant des objets, interconnectés par des liens (ou arêtes ou lignes). Ces réseaux sont des représentations abstraites des relations principalement présentes dans la vie réelle dans une grande diversité de systèmes biologiques et technologiques.
Construction managementConstruction management (CM) is a professional service that uses specialized, project management techniques and software to oversee the planning, design, construction and closeout of a project. The purpose of construction management is to control the quality of a project's scope, time / delivery and cost—sometimes referred to as a project management triangle or "triple constraints." CM is compatible with all project delivery systems, including design-bid-build, design-build, CM At-Risk and Public Private Partnerships.
Maximum satisfiability problemIn computational complexity theory, the maximum satisfiability problem (MAX-SAT) is the problem of determining the maximum number of clauses, of a given Boolean formula in conjunctive normal form, that can be made true by an assignment of truth values to the variables of the formula. It is a generalization of the Boolean satisfiability problem, which asks whether there exists a truth assignment that makes all clauses true. The conjunctive normal form formula is not satisfiable: no matter which truth values are assigned to its two variables, at least one of its four clauses will be false.
Vanishing gradient problemIn machine learning, the vanishing gradient problem is encountered when training artificial neural networks with gradient-based learning methods and backpropagation. In such methods, during each iteration of training each of the neural networks weights receives an update proportional to the partial derivative of the error function with respect to the current weight. The problem is that in some cases, the gradient will be vanishingly small, effectively preventing the weight from changing its value.
Étude du petit mondeLe « phénomène du petit monde » (appelé aussi effet du petit monde également connu sous le vocable « paradoxe de Milgram » car ses résultats semblent contraires à l'intuition) est l'hypothèse que chacun puisse être relié à n'importe quel autre individu par une courte chaîne de relations sociales. Ce concept reprend, après l'expérience du petit monde, conduite en 1967 par le psychosociologue Stanley Milgram, le concept de « six degrés de séparation », formulé par le Hongrois Frigyes Karinthy en 1929.