In machine learning, the vanishing gradient problem is encountered when training artificial neural networks with gradient-based learning methods and backpropagation. In such methods, during each iteration of training each of the neural networks weights receives an update proportional to the partial derivative of the error function with respect to the current weight. The problem is that in some cases, the gradient will be vanishingly small, effectively preventing the weight from changing its value. In the worst case, this may completely stop the neural network from further training. As one example of the problem cause, traditional activation functions such as the hyperbolic tangent function have gradients in the range , and backpropagation computes gradients by the chain rule. This has the effect of multiplying n of these small numbers to compute gradients of the early layers in an n-layer network, meaning that the gradient (error signal) decreases exponentially with n while the early layers train very slowly.
Back-propagation allowed researchers to train supervised deep artificial neural networks from scratch, initially with little success. Hochreiter's diplom thesis of 1991 formally identified the reason for this failure in the "vanishing gradient problem", which not only affects many-layered feedforward networks, but also recurrent networks. The latter are trained by unfolding them into very deep feedforward networks, where a new layer is created for each time step of an input sequence processed by the network. (The combination of unfolding and backpropagation is termed backpropagation through time.)
When activation functions are used whose derivatives can take on larger values, one risks encountering the related exploding gradient problem.
This section is based on the paper On the difficulty of training Recurrent Neural Networks by Pascanu, Mikolov, and Bengio.
A generic recurrent network has hidden states inputs , and outputs . Let it be parametrized by , so that the system evolves asOften, the output is a function of , as some .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees
This course provides the students with 1) a set of theoretical concepts to understand the machine learning approach; and 2) a subset of the tools to use this approach for problems arising in mechanica
vignette|Graphique de la fonction Unité Linéaire Rectifiée En mathématiques, la fonction Unité Linéaire Rectifiée (ou ReLU pour Rectified Linear Unit) est définie par : pour tout réel Elle est fréquemment utilisée comme fonction d'activation dans le contexte du réseau de neurones artificiels pour sa simplicité de calcul, en particulier de sa dérivée. Un désavantage de la fonction ReLU est que sa dérivée devient nulle lorsque l'entrée est négative ce qui peut empêcher la rétropropagation du gradient.
droite|vignette| Forme canonique d'un réseau neuronal résiduel. Une couche l − 1 est ignoré sur l'activation de l − 2. Un réseau neuronal résiduel ( ResNet ) est un réseau neuronal artificiel (ANN). Il s'agit d'une variante du HighwayNet , le premier réseau neuronal à action directe très profond avec des centaines de couches, beaucoup plus profond que les réseaux neuronaux précédents. Les sauts de connexion ou "raccourcis" sont utilisés pour passer par-dessus certaines couches ( les HighwayNets peuvent également avoir des poids pour les saut eux-mêmes, grâce à une matrice de poids supplémentaire pour leurs portes).
En intelligence artificielle, les réseaux antagonistes génératifs (RAG) parfois aussi appelés réseaux adverses génératifs (en anglais generative adversarial networks ou GANs) sont une classe d'algorithmes d'apprentissage non supervisé. Ces algorithmes ont été introduits par . Ils permettent de générer des images avec un fort degré de réalisme. Un GAN est un modèle génératif où deux réseaux sont placés en compétition dans un scénario de théorie des jeux. Le premier réseau est le générateur, il génère un échantillon (ex.
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Introduit un apprentissage profond, de la régression logistique aux réseaux neuraux, soulignant la nécessité de traiter des données non linéairement séparables.
Explore le développement historique et la formation de perceptrons multicouches, en mettant l'accent sur l'algorithme de rétropropagation et la conception de fonctionnalités.
Recent years have witnessed significant advance- ment in face recognition (FR) techniques, with their applications widely spread in people’s lives and security-sensitive areas. There is a growing need for reliable interpretations of decisions of such syste ...
2024
In this thesis, we study two closely related directions: robustness and generalization in modern deep learning. Deep learning models based on empirical risk minimization are known to be often non-robust to small, worst-case perturbations known as adversari ...
EPFL2024
, , , ,
Adversarial attacks in Natural Language Processing apply perturbations in the character or token levels. Token-level attacks, gaining prominence for their use of gradient-based methods, are susceptible to altering sentence semantics, leading to invalid adv ...