Classification décimale de DeweyLa classification décimale de Dewey (CDD) est un système visant à classer l’ensemble du fonds documentaire d’une bibliothèque, développé en 1876 par Melvil Dewey, un bibliographe américain. Elle a été complétée et perfectionnée par la classification décimale universelle (CDU) développée par Henri La Fontaine et Paul Otlet. Les dix classes retenues par la classification de Dewey correspondent à neuf disciplines fondamentales : philosophie, religion, sciences sociales, langues, sciences pures, techniques, beaux-arts et loisirs, littératures, géographie et histoire, auxquelles s’ajoute une classe « généralités ».
Principe d'entropie maximaleLe principe d'entropie maximale consiste, lorsqu'on veut représenter une connaissance imparfaite d'un phénomène par une loi de probabilité, à : identifier les contraintes auxquelles cette distribution doit répondre (moyenne, etc) ; choisir de toutes les distributions répondant à ces contraintes celle ayant la plus grande entropie au sens de Shannon. De toutes ces distributions, c'est en effet celle d'entropie maximale qui contient le moins d'information, et elle est donc pour cette raison la moins arbitraire de toutes celles que l'on pourrait utiliser.
Three-body problemIn physics and classical mechanics, the three-body problem is the problem of taking the initial positions and velocities (or momenta) of three point masses and solving for their subsequent motion according to Newton's laws of motion and Newton's law of universal gravitation. The three-body problem is a special case of the n-body problem. Unlike two-body problems, no general closed-form solution exists, as the resulting dynamical system is chaotic for most initial conditions, and numerical methods are generally required.
Problème à N corpsLe problème à N corps est un problème de mécanique céleste consistant à déterminer les trajectoires d'un ensemble de N corps s'attirant mutuellement ; plus précisément, il s'agit de résoudre les équations du mouvement de Newton pour N corps interagissant gravitationnellement, connaissant leurs masses ainsi que leurs positions et vitesses initiales. Le cas (problème à deux corps) a été résolu par Newton, mais dès (problème à trois corps) apparaissent des solutions essentiellement impossibles à expliciter, car sensibles aux conditions initiales.
Problème de l'isomorphisme de graphesvignette|Le problème est de savoir si deux graphes sont les mêmes. En informatique théorique, le problème de l'isomorphisme de graphes est le problème de décision qui consiste, étant donné deux graphes non orientés, à décider s'ils sont isomorphes ou pas, c'est-à-dire s'ils sont les mêmes, quitte à renommer les sommets. Ce problème est particulièrement important en théorie de la complexité, plus particulièrement pour le problème P=NP.