Publication

A comparison of noise reduction techniques for robust speech recognition

1999
Rapport ou document de travail
Résumé

This report presents the integration of several noise reduction methods into the front-end for speech recognition developed at IDIAP. The chosen methods are : Spectral Subtraction, Cepstral Mean Subtraction and Blind Equalization. These different methods are studied from a theoretical point of view, their implementation is described and are tested on the Numbers95 speech database. A good noise robustness is obtained by combining two of these methods, like Spectral Subtraction with Cepstral Mean Subtraction or Spectral Subtraction with Blind Equalization. The later combination is found to be more appropriate for real recognition systems since it is frame synchronous. A comparison with Jah-RASTA-PLP is also given.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.