Computational complexityIn computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.
Théorie de la complexité (informatique théorique)vignette|Quelques classes de complexité étudiées dans le domaine de la théorie de la complexité. Par exemple, P est la classe des problèmes décidés en temps polynomial par une machine de Turing déterministe. La théorie de la complexité est le domaine des mathématiques, et plus précisément de l'informatique théorique, qui étudie formellement le temps de calcul, l'espace mémoire (et plus marginalement la taille d'un circuit, le nombre de processeurs, l'énergie consommée ...) requis par un algorithme pour résoudre un problème algorithmique.
Graphe de blocsvignette|upright=1.4|Un graphe de blocs. En théorie des graphes, une branche des mathématiques combinatoires, un graphe de blocs ou arbre de cliques est un graphe non orienté dans lequel chaque composante biconnexe (ou « bloc ») est une clique. Les graphes de blocs ont été appelés aussi arbres Husimi (d'après Kôdi Husimi), mais ce nom fait plus référence aux graphes cactus, qui sont des graphes dans lesquels chaque composante biconnexe non triviale est un cycle.
Classe de complexitéEn informatique théorique, et plus précisément en théorie de la complexité, une classe de complexité est un ensemble de problèmes algorithmiques dont la résolution nécessite la même quantité d'une certaine ressource. Une classe est souvent définie comme l'ensemble de tous les problèmes qui peuvent être résolus sur un modèle de calcul M, utilisant une quantité de ressources du type R, où n, est la taille de l'entrée. Les classes les plus usuelles sont celles définies sur des machines de Turing, avec des contraintes de temps de calcul ou d'espace.
Quantum complexity theoryQuantum complexity theory is the subfield of computational complexity theory that deals with complexity classes defined using quantum computers, a computational model based on quantum mechanics. It studies the hardness of computational problems in relation to these complexity classes, as well as the relationship between quantum complexity classes and classical (i.e., non-quantum) complexity classes. Two important quantum complexity classes are BQP and QMA.
Problème de la cliquethumb|upright=1.5|Recherche exhaustive d'une 4-clique dans ce graphe à 7 sommets en testant la complétude des C(7,4)= 35 sous-graphes à 4 sommets. En informatique, le problème de la clique est un problème algorithmique qui consiste à trouver des cliques (sous-ensembles de sommets tous adjacents deux à deux, également appelés sous-graphes complets) dans un graphe. Ce problème a plusieurs formulations différentes selon les cliques et les informations sur les cliques devant être trouvées.
Complexité paramétréeEn algorithmique, la complexité paramétrée (ou complexité paramétrique) est une branche de la théorie de la complexité qui classifie les problèmes algorithmiques selon leur difficulté intrinsèque en fonction de plusieurs paramètres sur les données en entrée ou sur la sortie. Ce domaine est étudié depuis les années 90 comme approche pour la résolution exacte de problèmes NP-complets. Cette approche est utilisée en optimisation combinatoire, notamment en algorithmique des graphes, en intelligence artificielle, en théorie des bases de données et en bio-informatique.
Conseil (informatique théorique)En théorie de la complexité, un conseil est une entrée supplémentaire passée à une machine de Turing qui dépend de la taille de l'entrée, afin d'aider la machine à reconnaître un langage. Cette notion est introduite par Richard Karp et Richard J. Lipton en 1982. Étant donnés une fonction et une classe de complexité , la classe est l'ensemble des langages tels qu'il existe un langage et une suite de conseils de taille tels que pour toute entrée de taille , si et seulement si .
CographeUn cographe est, en théorie des graphes, un graphe qui peut être généré par complémentation et union disjointe à partir du graphe à un nœud. La plupart des problèmes algorithmiques peuvent être résolus sur cette classe en temps polynomial, et même linaire, du fait de ses propriétés structurelles. Cette famille de graphe a été introduite par plusieurs auteurs indépendamment dans les années 1970 sous divers noms, notamment D*-graphes, hereditary Dacey graphs et 2-parity graphs.
Graphe cordalthumb|Un cycle, en noir, avec deux cordes, en vert. Si l'on s'en tient à cette partie, le graphe est cordal. Supprimer l'une des arêtes vertes rendrait le graphe non cordal. En effet, l'autre arête verte formerait, avec les trois arêtes noires, un cycle de longueur 4 sans corde. En théorie des graphes, on dit qu'un graphe est cordal si chacun de ses cycles de quatre sommets ou plus possède une corde, c'est-à-dire une arête reliant deux sommets non adjacents du cycle.