User-Customized Password Speaker Verification based on HMM/ANN and GMM Models
Publications associées (69)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Model-based approaches to Speaker Verification (SV), such as Joint Factor Analysis (JFA), i-vector and relevance Maximum-a-Posteriori (MAP), have shown to provide state-of-the-art performance for text-dependent systems with fixed phrases. The performance o ...
Ieee2017
, ,
We propose to model the acoustic space of deep neural network (DNN) class-conditional posterior probabilities as a union of lowdimensional subspaces. To that end, the training posteriors are used for dictionary learning and sparse coding. Sparse representa ...
Automatic speech recognition (ASR) is a fascinating area of research towards realizing humanmachine interactions. After more than 30 years of exploitation of Gaussian Mixture Models (GMMs), state-of-the-art systems currently rely on Deep Neural Network (DN ...
The i-vector and Joint Factor Analysis (JFA) systems for text- dependent speaker verification use sufficient statistics computed from a speech utterance to estimate speaker models. These statis- tics average the acoustic information over the utterance ther ...
The i-vector and Joint Factor Analysis (JFA) systems for text- dependent speaker verification use sufficient statistics computed from a speech utterance to estimate speaker models. These statis- tics average the acoustic information over the utterance ther ...
This paper presents Subspace Gaussian Mixture Model (SGMM) approach employed as a probabilistic generative model to estimate speaker vector representations to be subsequently used in the speaker verification task. SGMMs have already been shown to significa ...
Conventional deep neural networks (DNN) for speech acoustic modeling rely on Gaussian mixture models (GMM) and hidden Markov model (HMM) to obtain binary class labels as the targets for DNN training. Subword classes in speech recognition systems correspond ...
Manual transcription of audio databases for the development of automatic speech recognition (ASR) systems is a costly and time-consuming process. In the context of deriving acoustic models adapted to a specific application, or in low-resource scenarios, it ...
We propose to model the acoustic space of deep neural network (DNN) class-conditional posterior probabilities as a union of low- dimensional subspaces. To that end, the training posteriors are used for dictionary learning and sparse coding. Sparse represen ...
Manual transcription of audio databases for the development of automatic speech recognition (ASR) systems is a costly and time-consuming process. In the context of deriving acoustic models adapted to a specific application, or in low-resource scenarios, it ...