Publication

HMM inference towards flexible speech recognition

Publications associées (34)

Novel Methods For Detection And Analysis Of Atypical Aspects In Speech

Julian David Fritsch

Atypical aspects in speech concern speech that deviates from what is commonly considered normal or healthy. In this thesis, we propose novel methods for detection and analysis of these aspects, e.g. to monitor the temporary state of a speaker, diseases tha ...
EPFL2023

Robust Outlier Rejection for 3D Registration with Variational Bayes

Mathieu Salzmann, Jiancheng Yang, Zheng Dang, Zhen Wei, Haobo Jiang

Learning-based outlier (mismatched correspondence) rejection for robust 3D registration generally formulates the outlier removal as an inlier/outlier classification problem. The core for this to be successful is to learn the discriminative inlier/outlier f ...
Los Alamitos2023

On quantifying the quality of acoustic models in hybrid DNN-HMM ASR

Hervé Bourlard, Afsaneh Asaei, Pranay Dighe

We propose an information theoretic framework for quantitative assessment of acoustic models used in hidden Markov model (HMM) based automatic speech recognition (ASR). The HMM backend expects that (i) the acoustic model yields accurate state conditional e ...
ELSEVIER2020

End-to-End Acoustic Modeling using Convolutional Neural Networks for HMM-based Automatic Speech Recognition

Ronan Collobert, Dimitri Palaz

In hidden Markov model (HMM) based automatic speech recognition (ASR) system, modeling the statistical relationship between the acoustic speech signal and the HMM states that represent linguistically motivated subword units such as phonemes is a crucial st ...
ELSEVIER SCIENCE BV2019

Inference of genealogies with geolocalised genetic data

Natural populations present an abundant genetic variability. Like mutation or natural se- lection, dierent processes are at stake to generate this variability. Population genetics is a topic that emerged in the late 40's, thanks mainly to the biologists Fi ...
2017

Towards Weakly Supervised Acoustic Subword Unit Discovery and Lexicon Development Using Hidden Markov Models

Ramya Rasipuram, Marzieh Razavi

Developing a phonetic lexicon for a language requires linguistic knowledge as well as human effort, which may not be available, particularly for under-resourced languages. An alternative to development of a phonetic lexicon is to automatically derive subwo ...
Idiap2017

Low-Rank Representation For Enhanced Deep Neural Network Acoustic Models

Automatic speech recognition (ASR) is a fascinating area of research towards realizing humanmachine interactions. After more than 30 years of exploitation of Gaussian Mixture Models (GMMs), state-of-the-art systems currently rely on Deep Neural Network (DN ...
Idiap2016

Statistical models for HMM/ANN hybrids

Philip Neil Garner, David Imseng

We present a theoretical investigation into the use of normalised artificial neural network (ANN) outputs in the context of hidden Markov models (HMMs). The work is motivated by the pursuit of a more theoretically rigorous understanding of the Kullback-Lie ...
Idiap2013

Feature distribution modelling techniques for 3D face recognition

Sébastien Marcel

This paper shows that Hidden Markov Models (HMMs) can be effectively ap- plied to 3D face data. The examined HMM techniques are shown to be superior to a previously examined Gaussian Mixture Model (GMM) technique. Experi- ments conducted on the Face Recogn ...
2010

Enhanced Phone Posteriors for Improving Speech Recognition Systems

Hervé Bourlard, Hamed Ketabdar

Using phone posterior probabilities has been increasingly explored for improving automatic speech recognition (ASR) systems. In this paper, we propose two approaches for hierarchically enhancing these phone posteriors, by integrating long acoustic context, ...
2010

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.