Détection de visagevignette|Détection de visage par la méthode de Viola et Jones. La détection de visage est un domaine de la vision par ordinateur consistant à détecter un visage humain dans une . C'est un cas spécifique de détection d'objet, où l'on cherche à détecter la présence et la localisation précise d'un ou plusieurs visages dans une image. C'est l'un des domaines de la vision par ordinateur parmi les plus étudiés, avec de très nombreuses publications, brevets, et de conférences spécialisées.
BoostingLe boosting est un domaine de l'apprentissage automatique (branche de l'intelligence artificielle). C'est un principe qui regroupe de nombreux algorithmes qui s'appuient sur des ensembles de classifieurs binaires : le boosting optimise leurs performances. Le principe est issu de la combinaison de classifieurs (appelés également hypothèses). Par itérations successives, la connaissance d'un classifieur faible - weak classifier - est ajoutée au classifieur final - strong classifier.
Système de reconnaissance facialeUn système de reconnaissance faciale est une application logicielle visant à reconnaître automatiquement une personne grâce à son visage. Il s'agit d'un sujet particulièrement étudié en vision par ordinateur, avec de très nombreuses publications et brevets, et des conférences spécialisées. La reconnaissance de visage a de nombreuses applications en vidéosurveillance, biométrie, robotique, indexation d'images et de vidéos, , etc. Ces systèmes sont généralement utilisés à des fins de sécurité pour déverrouiller ordinateur/mobile/console, mais aussi en domotique.
Détection d'objetthumb|Détection de visage avec la méthode de Viola et Jones. En vision par ordinateur on désigne par détection d'objet (ou classification d'objet) une méthode permettant de détecter la présence d'une instance (reconnaissance d'objet) ou d'une classe d'objets dans une . Une attention particulière est portée à la détection de visage et la détection de personne. Ces méthodes font souvent appel à l'apprentissage supervisé et ont des applications dans de multiples domaines, tels la ou la vidéo surveillance.
Machine à vecteurs de supportLes machines à vecteurs de support ou séparateurs à vaste marge (en anglais support-vector machine, SVM) sont un ensemble de techniques d'apprentissage supervisé destinées à résoudre des problèmes de discrimination et de régression. Les SVM sont une généralisation des classifieurs linéaires. Les séparateurs à vaste marge ont été développés dans les années 1990 à partir des considérations théoriques de Vladimir Vapnik sur le développement d'une théorie statistique de l'apprentissage : la théorie de Vapnik-Tchervonenkis.
Analyse discriminante linéaireEn statistique, l’analyse discriminante linéaire ou ADL (en anglais, linear discriminant analysis ou LDA) fait partie des techniques d’analyse discriminante prédictive. Il s’agit d’expliquer et de prédire l’appartenance d’un individu à une classe (groupe) prédéfinie à partir de ses caractéristiques mesurées à l’aide de variables prédictives. Dans l’exemple de l'article Analyse discriminante, le fichier Flea Beetles, l’objectif est de déterminer l’appartenance de puces à telle ou telle espèce à partir de la largeur et de l’angle de son édéage (partie des organes génitaux mâles de l'insecte.
Gradient boostingGradient boosting is a machine learning technique used in regression and classification tasks, among others. It gives a prediction model in the form of an ensemble of weak prediction models, i.e., models that make very few assumptions about the data, which are typically simple decision trees. When a decision tree is the weak learner, the resulting algorithm is called gradient-boosted trees; it usually outperforms random forest.
Apprentissage ensemblisteIn statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives.
Corner detectionCorner detection is an approach used within computer vision systems to extract certain kinds of features and infer the contents of an image. Corner detection is frequently used in motion detection, , video tracking, image mosaicing, panorama stitching, 3D reconstruction and object recognition. Corner detection overlaps with the topic of interest point detection. A corner can be defined as the intersection of two edges. A corner can also be defined as a point for which there are two dominant and different edge directions in a local neighbourhood of the point.
Face IDFace ID est un procédé, système de reconnaissance faciale et logiciel propriétaire imaginé et réalisé par Apple. Il est utilisé sur les iPhone X,XS,XS Max,XR,11,11 Pro,11 Pro Max,12 mini,12,12 Pro,12 Pro Max,13 mini,13,13 Pro, 13 Pro Max, 14, 14 Plus, 14 Pro, 14 Pro Max, iPads Pro 2018, iPads Pro 2020 et iPads Pro 2022 et se veut plus fiable que Touch ID. De la même manière que Touch ID, il permet l’authentification des utilisateurs pour le déverrouillage, la possibilité d’effectuer des paiements au sein de magasins d’applications tels sont l'App Store et l'iTunes Store, mais également d’effectuer des achats grâce à Apple Pay.