Boosting Pixel-based Classifiers for Face Verification
Publications associées (55)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Detecting faces in images is a key step in numerous computer vision applications as face recognition for example. Face detection is a difficult task in image analysis because of the large face intra-class variability which is due to the important influence ...
Face detection in images or video sequences is a very challenging problem. It has a wide range of applications but at the same time it presents a great number of difficulties, since faces are non-rigid and very changeable objects that can adopt a lot of di ...
The performance of face authentication systems has steadily improved over the last few years. State-of-the-art methods use the projection of the gray-scale face image into a Linear Discriminant subspace as input of a classifier such as Support Vector Machi ...
Statistical pattern recognition occupies a central place in the general context of machine learning techniques, as it provides the theoretical insights and the practical means for solving a variety of problems ranging from character recognition to face rec ...
Replica detection is a prerequisite for the discovery of copyright infringement and detection of illicit content. For this purpose, content-based systems can be an efficient alternative to watermarking. Rather than imperceptibly embedding a signal, content ...
Boosting-based methods have recently led to the state-of-the-art face detection systems. In these systems, weak classifiers to be boosted are based on simple, local, Haar-like features. However, it can be empirically observed that in later stages of the bo ...
We compare two classifier approaches, namely classifiers based on Multi Layer Perceptrons (MLPs) and Gaussian Mixture Models (GMMs), for use in a face verification system. The comparison is carried out in terms of performance, robustness and practicability ...
We present a method for face detection which uses a new SVM structure trained in an expert manner in the eigenface space. This robust method has been introduced as a post processing step in a realtime face detection system. The principle is to train severa ...
We compare two classifier approaches, namely classifiers based on Multi Layer Perceptrons (MLPs) and Gaussian Mixture Models (GMMs), for use in a face verification system. The comparison is carried out in terms of performance, robustness and practicability ...
Humans have the ability to learn. Having seen an object we can recognise it later. We can do this because our nervous system uses an efficient and robust visual processing and capabilities to learn from sensory input. On the other hand, designing algorithm ...