On Use of Task Independent Training Data in Tandem Feature Extraction
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Lab sessions given in relation to Herve Bourlard's Speech Recognition course at EPFL (Ecole Polytechnique Federale de Lausanne), second semester 2001. The full session is available from the web as ftp://ftp.idiap.ch/pub/sacha/labs/Session2.tgz . ...
In this paper, the concept of Wavelet-domain Hidden Markov Trees (WHMT) is introduced to Automatic Speech Recognition. WHMT are a convenient means to model the structure of wavelet feature vectors, as wavelet coefficients can be interpreted as nodes in a b ...
In current automatic speech recognition (ASR) systems, the energy is not used as part of the feature vector in spite of being a fundamental feature in the speech signal. The noise inherent in its estimation degrades the system performance. In this report w ...
Automatic speech recognition (ASR) is a very challenging problem due to the wide variety of the data that it must be able to deal with. Being the standard tool for ASR, hidden Markov models (HMMs) have proven to work well for ASR when there are controls ov ...
École Polytechnique Fédérale de Lausanne, Computer Science Department2003
Automatic speech recognition (ASR) is a very challenging problem due to the wide variety of the data that it must be able to deal with. Being the standard tool for ASR, hidden Markov models (HMMs) have proven to work well for ASR when there are controls ov ...
Automatic speech recognition (ASR) is a very challenging problem due to the wide variety of the data that it must be able to deal with. Being the standard tool for ASR, hidden Markov models (HMMs) have proven to work well for ASR when there are controls ov ...
The recognition of events within multi-modal data is a challenging problem. In this paper we focus on the recognition of events by using both audio and video data. We investigate the use of data fusion techniques in order to recognise these sequences withi ...
HMM2 is a particular hidden Markov model where state emission probabilities of the temporal (primary) HMM are modeled through (secondary) state-dependent frequency-based HMMs [12]. As shown in [13], a secondary HMM can also be used to extract robust ASR fe ...
HMM2 is a particular hidden Markov model where state emission probabilities of the temporal (primary) HMM are modeled through (secondary) state-dependent frequency-based HMMs [12]. As shown in [13], a secondary HMM can also be used to extract robust ASR fe ...
State-of-the-art Automatic Speech Recognition (ASR) systems make extensive use of Hidden Markov Models (HMMs), characterized by flexible statistical modeling, powerful optimization (training) techniques and efficient recognition algorithms. When allowed by ...