On Use of Task Independent Training Data in Tandem Feature Extraction
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
HMM2 is a particular hidden Markov model where state emission probabilities of the temporal (primary) HMM are modeled through (secondary) state-dependent frequency-based HMMs [12]. As shown in [13], a secondary HMM can also be used to extract robust ASR fe ...
Automatic speech recognition (ASR) is a very challenging problem due to the wide variety of the data that it must be able to deal with. Being the standard tool for ASR, hidden Markov models (HMMs) have proven to work well for ASR when there are controls ov ...
École Polytechnique Fédérale de Lausanne, Computer Science Department2003
Automatic speech recognition (ASR) is a very challenging problem due to the wide variety of the data that it must be able to deal with. Being the standard tool for ASR, hidden Markov models (HMMs) have proven to work well for ASR when there are controls ov ...
In current automatic speech recognition (ASR) systems, the energy is not used as part of the feature vector in spite of being a fundamental feature in the speech signal. The noise inherent in its estimation degrades the system performance. In this report w ...
Automatic speech recognition (ASR) is a very challenging problem due to the wide variety of the data that it must be able to deal with. Being the standard tool for ASR, hidden Markov models (HMMs) have proven to work well for ASR when there are controls ov ...
In this paper, the concept of Wavelet-domain Hidden Markov Trees (WHMT) is introduced to Automatic Speech Recognition. WHMT are a convenient means to model the structure of wavelet feature vectors, as wavelet coefficients can be interpreted as nodes in a b ...
Lab sessions given in relation to Herve Bourlard's Speech Recognition course at EPFL (Ecole Polytechnique Federale de Lausanne), second semester 2001. The full session is available from the web as ftp://ftp.idiap.ch/pub/sacha/labs/Session2.tgz . ...
HMM2 is a particular hidden Markov model where state emission probabilities of the temporal (primary) HMM are modeled through (secondary) state-dependent frequency-based HMMs [12]. As shown in [13], a secondary HMM can also be used to extract robust ASR fe ...
The recognition of events within multi-modal data is a challenging problem. In this paper we focus on the recognition of events by using both audio and video data. We investigate the use of data fusion techniques in order to recognise these sequences withi ...
State-of-the-art Automatic Speech Recognition (ASR) systems make extensive use of Hidden Markov Models (HMMs), characterized by flexible statistical modeling, powerful optimization (training) techniques and efficient recognition algorithms. When allowed by ...