Estimating the Quality of Face Localization for Face Verification
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this paper, we propose a novel generative approach for face authentication, based on a Local Binary Pattern (LBP) description of the face. A generic face model is considered as a collection of LBP-histograms. Then, a client-specific model is obtained by ...
In this paper we present the design and evaluate the performance of an autonomic workflow execution engine. Although there exist many distributed workflow engines, in practice, it remains a difficult problem to deploy such systems in an optimal configurati ...
Detecting faces in images is a key step in numerous computer vision applications as face recognition for example. Face detection is a difficult task in image analysis because of the large face intra-class variability which is due to the important influence ...
This paper addresses the problem of locating facial features in images of frontal faces taken under different lighting conditions. The well-known Active Shape Model method proposed by Cootes {\it et al.} is extended to improve its robustness to illuminatio ...
In this paper, we propose a novel generative approach for face authentication, based on a Local Binary Pattern (LBP) description of the face. A generic face model is considered as a collection of LBP-histograms. Then, a client-specific model is obtained by ...
The performance of face authentication systems has steadily improved over the last few years. State-of-the-art methods use the projection of the gray-scale face image into a Linear Discriminant subspace as input of a classifier such as Support Vector Machi ...
The purpose of Face localization is to determine the coordinates of a face in a given image. It is a fundamental research area in computer vision because it serves, as a necessary first step, any face processing systems, such as automatic face recognition, ...
In much of the literature devoted to face recognition, experiments are performed with controlled images (e.g. manual face localization, controlled lighting, background and pose); however, a practical recognition system has to be robust to more challenging ...
Face localization is the process of finding the exact position of a face in a given image. This can be useful in several applications such as face tracking or person authentication. The purpose of this paper is to show that the error made during the locali ...
Quality assessment is a central issue in the design, implementation, and performance testing of all systems. Digital signal processing systems generally deal with visual information that are meant for human consumption. An image, a video, or a 3D model may ...