Publication

Clustering And Segmenting Speakers And Their Locations In Meetings

Guillaume Lathoud, Jitendra Ajmera
2004
Article de conférence
Résumé

This paper presents a new approach toward automatic annotation of meetings in terms of speaker identities and their locations. This is achieved by segmenting the audio recordings using two independent sources of information : magnitude spectrum analysis and sound source localization. We combine the two in an appropriate HMM framework. There are three main advantages of this approach. First, it is completely unsupervised, i.e. speaker identities and number of speakers and locations are automatically inferred. Second, it is threshold-free, i.e. the decisions are made without the need of a threshold value which generally requires an additional development dataset. The third advantage is that the joint segmentation improves over the speaker segmentation derived using only acoustic features. Experiments on a series of meetings recorded in the IDIAP Smart Meeting Room demonstrate the effectiveness of this approach.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.