Base de donnéesUne base de données permet de stocker et de retrouver des données structurées, semi-structurées ou des données brutes ou de l'information, souvent en rapport avec un thème ou une activité ; celles-ci peuvent être de natures différentes et plus ou moins reliées entre elles. Leurs données peuvent être stockées sous une forme très structurée (base de données relationnelles par exemple), ou bien sous la forme de données brutes peu structurées (avec les bases de données NoSQL par exemple).
Base de données relationnellethumb|upright=1.2|Structure générale d'une base de données relationnelle. En informatique, une base de données relationnelle (en anglais: relational database management system (RDBMS)) est une base de données où l'information est organisée dans des tableaux à deux dimensions appelés des relations ou tables, selon le modèle introduit par Edgar F. Codd en 1960. Selon ce modèle relationnel, une base de données consiste en une ou plusieurs relations. Les lignes de ces relations sont appelées des nuplets ou enregistrements.
Decision boundaryNOTOC In a statistical-classification problem with two classes, a decision boundary or decision surface is a hypersurface that partitions the underlying vector space into two sets, one for each class. The classifier will classify all the points on one side of the decision boundary as belonging to one class and all those on the other side as belonging to the other class. A decision boundary is the region of a problem space in which the output label of a classifier is ambiguous.
Probabilistic classificationIn machine learning, a probabilistic classifier is a classifier that is able to predict, given an observation of an input, a probability distribution over a set of classes, rather than only outputting the most likely class that the observation should belong to. Probabilistic classifiers provide classification that can be useful in its own right or when combining classifiers into ensembles. Formally, an "ordinary" classifier is some rule, or function, that assigns to a sample x a class label ŷ: The samples come from some set X (e.
Unilateral hearing lossUnilateral hearing loss (UHL) is a type of hearing impairment where there is normal hearing in one ear and impaired hearing in the other ear. Patients with unilateral hearing loss have difficulty: Hearing conversation on their impaired side Localizing sound Understanding speech in the presence of background noise In interpersonal interaction in social settings Focusing on individual sound sources in large, open environments Heavy impairment of the auditory Figure–ground perception In quiet conditions, speech discrimination is no worse than normal hearing in those with partial deafness; however, in noisy environments speech discrimination is almost always severe.
Classification en classes multiplesIn machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). While many classification algorithms (notably multinomial logistic regression) naturally permit the use of more than two classes, some are by nature binary algorithms; these can, however, be turned into multinomial classifiers by a variety of strategies.
OstéophonieL'ostéophonie ou conduction osseuse désigne le phénomène de propagation du son jusqu'à l'oreille interne via les os du crâne. La conduction osseuse est la raison pour laquelle la voix d'une personne lui semble différente quand elle est enregistrée et reproduite. En effet, étant donné qu'une onde sonore à fréquence basse se propage mieux dans les os que dans l'air, nous avons tendance à percevoir notre voix plus basse et plus profonde que les autres ne la perçoivent.
Database designDatabase design is the organization of data according to a database model. The designer determines what data must be stored and how the data elements interrelate. With this information, they can begin to fit the data to the database model. A database management system manages the data accordingly. Database design involves classifying data and identifying interrelationships. This theoretical representation of the data is called an ontology. The ontology is the theory behind the database's design.
Apprentissage ensemblisteIn statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives.
Decision analysisDecision analysis (DA) is the discipline comprising the philosophy, methodology, and professional practice necessary to address important decisions in a formal manner. Decision analysis includes many procedures, methods, and tools for identifying, clearly representing, and formally assessing important aspects of a decision; for prescribing a recommended course of action by applying the maximum expected-utility axiom to a well-formed representation of the decision; and for translating the formal representation of a decision and its corresponding recommendation into insight for the decision maker, and other corporate and non-corporate stakeholders.