Analyse de la varianceEn statistique, lanalyse de la variance (terme souvent abrégé par le terme anglais ANOVA : analysis of variance) est un ensemble de modèles statistiques utilisés pour vérifier si les moyennes des groupes proviennent d'une même population. Les groupes correspondent aux modalités d'une variable qualitative (p. ex. variable : traitement; modalités : programme d'entrainement sportif, suppléments alimentaires; placebo) et les moyennes sont calculés à partir d'une variable continue (p. ex. gain musculaire).
Système expertUn système expert est un outil capable de reproduire les mécanismes cognitifs d'un expert, dans un domaine particulier. Il s'agit de l'une des voies tentant d'aboutir à l'intelligence artificielle. Plus précisément, un système expert est un logiciel capable de répondre à des questions, en effectuant un raisonnement à partir de faits et de règles connues. Il peut servir notamment comme outil d'aide à la décision. Le premier système expert a été Dendral. Il permettait d'identifier les constituants chimiques.
AadhaarAadhaar est un système d'identification de la population de l'Inde fondé sur la biométrie. Il est gérée par l'Unique Identification Authority of India. Le système comprend un numéro d'identification national à 12 chiffres associés à chaque personne en plus de données biométriques, comprenant la photographie des iris, la photographie du visage et les empreintes digitales. Le projet intègre également des données plus usuelles, comme le nom, le sexe, la date et le lieu de naissance.
Test de validationUn test de validation est un type de test informatique qui permet de vérifier si toutes les exigences client, décrites dans le document de spécification du logiciel, sont respectées. Les tests de validation se décomposent généralement en plusieurs phases : Validation fonctionnelle : les tests fonctionnels assurent que les différents modules ou composants implémentent correctement les exigences client. Ces tests peuvent être de type valide, invalide, inopportuns, etc.
Algorithms for calculating varianceAlgorithms for calculating variance play a major role in computational statistics. A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.
Dilemme biais-varianceEn statistique et en apprentissage automatique, le dilemme (ou compromis) biais–variance est le problème de minimiser simultanément deux sources d'erreurs qui empêchent les algorithmes d'apprentissage supervisé de généraliser au-delà de leur échantillon d'apprentissage : Le biais est l'erreur provenant d’hypothèses erronées dans l'algorithme d'apprentissage. Un biais élevé peut être lié à un algorithme qui manque de relations pertinentes entre les données en entrée et les sorties prévues (sous-apprentissage).
Sélection de caractéristiqueLa sélection de caractéristique (ou sélection d'attribut ou de variable) est un processus utilisé en apprentissage automatique et en traitement de données. Il consiste, étant donné des données dans un espace de grande dimension, à trouver un sous-sensemble de variables pertinentes. C'est-à-dire que l'on cherche à minimiser la perte d'information venant de la suppression de toutes les autres variables. C'est une méthode de réduction de la dimensionnalité. Extraction de caractéristique Catégorie:Apprentissage
Algorithme de rechercheEn informatique, un algorithme de recherche est un type d'algorithme qui, pour un domaine, un problème de ce domaine et des critères donnés, retourne en résultat un ensemble de solutions répondant au problème. Supposons que l'ensemble de ses entrées soit divisible en sous-ensemble, par rapport à un critère donné, qui peut être, par exemple, une relation d'ordre. De façon générale, un tel algorithme vérifie un certain nombre de ces entrées et retourne en sortie une ou plusieurs des entrées visées.
Médecine fondée sur les faitsLa médecine fondée sur les faits (ou médecine fondée sur les données probantes ; voir les autres synonymes) se définit comme . On utilise plus couramment le terme anglais , et parfois les termes médecine fondée sur les preuves ou médecine factuelle. Ces preuves proviennent d'études cliniques systématiques, telles que des essais contrôlés randomisés en double aveugle, des méta-analyses, éventuellement des études transversales ou de suivi bien construites.
Pratique fondée sur les preuvesLa pratique fondée sur les preuves, sur les faits, ou sur des données probantes est une approche interdisciplinaire de la pratique clinique qui a gagné du terrain après son apparition au début des années 1990 par l'intermédiaire du médecin canadien Gordon Guyatt. En 1992, une publication indique : . Elle a commencé en médecine comme médecine factuelle (EBM) et se propage aux professions paramédicales de la santé, domaines éducatifs et autres.