Résumé
En statistique, lanalyse de la variance (terme souvent abrégé par le terme anglais ANOVA : analysis of variance) est un ensemble de modèles statistiques utilisés pour vérifier si les moyennes des groupes proviennent d'une même population. Les groupes correspondent aux modalités d'une variable qualitative (p. ex. variable : traitement; modalités : programme d'entrainement sportif, suppléments alimentaires; placebo) et les moyennes sont calculés à partir d'une variable continue (p. ex. gain musculaire). Ce test s'applique lorsque l'on mesure une ou plusieurs variables explicatives catégorielle (appelées alors facteurs de variabilité, leurs différentes modalités étant parfois appelées « niveaux ») qui ont de l'influence sur la loi d'une variable continue à expliquer. On parle d'analyse à un facteur lorsque l'analyse porte sur un modèle décrit par un seul facteur de variabilité, d'analyse à deux facteurs ou d'analyse multifactorielle sinon. Ronald Aylmer Fisher présente pour la première fois le terme variance et propose son analyse formelle dans un article de 1918 The Correlation Between Relatives on the Supposition of Mendelian Inheritance. Sa première application de l'analyse de la variance a été publiée en 1921. L'analyse de la variance est devenue largement connue après avoir été incluse dans le livre de Fisher de 1925 Statistical Methods for Research Workers. L'analyse de la variance permet d'étudier le comportement d'une variable quantitative à expliquer en fonction d'une ou de plusieurs variables qualitatives, aussi appelées nominales catégorielles. Lorsque l'on souhaite étudier le pouvoir explicatif de plusieurs variables qualitatives à la fois, on utilisera une analyse de la variance multiple (MANOVA). Si un modèle contient des variables explicatives catégorielles et continues et que l'on souhaite étudier les lois liant les variables explicatives continues avec la variable quantitative à expliquer en fonction de chaque modalité des variables catégorielles, on utilisera alors une analyse de la covariance (ANCOVA).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.