Publication

Pseudo-Syntactic Language Modeling for Disfluent Speech Recognition

2004
Rapport ou document de travail
Résumé

Language models for speech recognition are generally trained on text corpora. Since these corpora do not contain the disfluencies found in natural speech, there is a train/test mismatch when these models are applied to conversational speech. In this work we investigate a language model (LM) designed to model these disfluencies as a syntactic process. By modeling self-corrections we obtain an improvement over our baseline syntactic model. We also obtain a 30% relative reduction in perplexity from the best performing standard {N-gram} model when we interpolate it with our syntactically derived models.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.