Improving Continuous Speech Recognition System Performance with Grapheme Modelling
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Automatic speech recognition (ASR) systems incorporate expert knowledge of language or the linguistic expertise through the use of phone pronunciation lexicon (or dictionary) where each word is associated with a sequence of phones. The creation of phone pr ...
There is growing interest in using graphemes as subword units, especially in the context of the rapid development of hidden Markov model (HMM) based automatic speech recognition (ASR) system, as it eliminates the need to build a phoneme pronunciation lexic ...
There is growing interest in using graphemes as subword units, especially in the context of the rapid development of hidden Markov model (HMM) based automatic speech recognition (ASR) system, as it eliminates the need to build a phoneme pronunciation lexic ...
Phonological studies suggest that the typical subword units such as phones or phonemes used in automatic speech recognition systems can be decomposed into a set of features based on the articulators used to produce the sound. Most of the current approaches ...
State-of-the-art phoneme sequence recognition systems are based on hybrid hidden Markov model/artificial neural networks (HMM/ANN) framework. In this framework, the local classifier, ANN, is typically trained using Viterbi expectation-maximization algorith ...
The state-of-the-art automatic speech recognition (ASR) systems typically use phonemes as subword units. In this work, we present a novel grapheme-based ASR system that jointly models phoneme and grapheme information using Kullback-Leibler divergence-based ...
Using phone posterior probabilities has been increasingly explored for improving automatic speech recognition (ASR) systems. In this paper, we propose two approaches for hierarchically enhancing these phone posteriors, by integrating long acoustic context, ...
In this paper, we propose a simple approach to jointly model both grapheme and phoneme information using Kullback-Leibler divergence based HMM (KL-HMM) system. More specifically, graphemes are used as subword units and phoneme posterior probabilities estim ...
The use of local phoneme posterior probabilities has been increasingly explored for improving speech recognition systems. Hybrid hidden Markov model / artificial neural network (HMM/ANN) and Tandem are the most successful examples of such systems. In this ...
The use of local phoneme posterior probabilities has been increasingly explored for improving speech recognition systems. Hybrid hidden Markov model / artificial neural network (HMM/ANN) and Tandem are the most successful examples of such systems. In this ...