Classe traceEn mathématiques, un opérateur de classe trace, ou opérateur à trace, est un opérateur compact pour lequel on peut définir une trace au sens de l’algèbre linéaire, qui est finie et ne dépend pas de la base. En s’inspirant de la définition dans le cas de la dimension finie, un opérateur borné A sur un espace de Hilbert séparable est dit de classe trace si dans une certaine base hilbertienne {ek}k (et donc dans toutes) de H, la série à termes positifs suivante converge où (A* A) désigne la racine carrée de l' A* A.
État quantiqueL'état d'un système physique décrit tous les aspects de ce système, dans le but de prévoir les résultats des expériences que l'on peut réaliser. Le fait que la mécanique quantique soit non déterministe entraîne une différence fondamentale par rapport à la description faite en mécanique classique : alors qu'en physique classique, l'état du système détermine de manière absolue les résultats de mesure des grandeurs physiques, une telle chose est impossible en physique quantique et la connaissance de l'état permet seulement de prévoir, de façon toutefois parfaitement reproductible, les probabilités respectives des différents résultats qui peuvent être obtenus à la suite de la réduction du paquet d'onde lors de la mesure d'un système quantique.
Partial traceIn linear algebra and functional analysis, the partial trace is a generalization of the trace. Whereas the trace is a scalar valued function on operators, the partial trace is an operator-valued function. The partial trace has applications in quantum information and decoherence which is relevant for quantum measurement and thereby to the decoherent approaches to interpretations of quantum mechanics, including consistent histories and the relative state interpretation.