Capacité thermiqueLa capacité thermique (anciennement capacité calorifique) d'un corps est une grandeur qui mesure la chaleur qu'il faut lui transférer pour augmenter sa température d'un kelvin. Inversement, elle permet de quantifier la possibilité qu'a ce corps d'absorber ou de restituer de la chaleur au cours d'une transformation pendant laquelle sa température varie. Elle s'exprime en joules par kelvin (). C'est une grandeur extensive : plus la quantité de matière est importante, plus la capacité thermique est grande.
Capacité thermique massiqueLa capacité thermique massique (symbole usuel c), anciennement appelée chaleur massique ou chaleur spécifique, est la capacité thermique d'un matériau rapportée à sa masse. C'est une grandeur qui reflète la capacité d'un matériau à accumuler de l'énergie sous forme thermique, pour une masse donnée, quand sa température augmente. Une grande capacité thermique signifie qu'une grande quantité d'énergie peut être stockée, moyennant une augmentation relativement faible de la température.
Réacteur nucléaireUn réacteur nucléaire est un ensemble de dispositifs comprenant du combustible nucléaire, qui constitue le « cœur » du réacteur, dans lequel une réaction en chaîne peut être initiée et contrôlée par des agents humains ou par des systèmes automatiques, suivant des protocoles et au moyen de dispositifs propres à la fission nucléaire. La chaleur ainsi produite est ensuite évacuée et éventuellement convertie en énergie électrique.
SurgénérationLa surgénération ou surrégénération est la capacité d'un réacteur nucléaire à produire plus d'isotopes fissiles qu'il n'en consomme, en transmutant des isotopes fertiles en isotopes fissiles. Le seul isotope fissile disponible en tant que ressource naturelle sur Terre est l'uranium 235, directement exploitable dans le cycle du combustible nucléaire. La surgénération permet théoriquement de valoriser en tant que combustible nucléaire l'ensemble des matières fertiles tels l'uranium 238, qui représente plus de 99 % de l'uranium naturel, et le thorium, lui-même trois fois plus abondant que l'uranium.
Generation IV reactorGeneration IV reactors (Gen IV) are nuclear reactor design technologies that are envisioned as successors of generation III reactors. The Generation IV International Forum (GIF) - an international organization that coordinates the development of generation IV reactors - specifically selected six reactor technologies as candidates for generation IV reactors. The designs target improved safety, sustainability, efficiency, and cost.
Réacteur à eau légèreUn réacteur à eau légère (REL) ou light water reactor (LWR) est un réacteur nucléaire qui utilise de l'eau, aussi appelée eau légère, comme fluide caloporteur et modérateur. Cela le distingue du réacteur à eau lourde et du réacteur modéré au graphite. Il s'agit de réacteurs à neutrons thermiques. Les réacteurs à eau légère les plus courants sont les réacteurs à eau pressurisée (REP) et les réacteurs à eau bouillante (REB). D'autres types de réacteurs sont refroidis à l'eau légère, notamment les RBMK russes et des réacteurs militaires de production de plutonium.
Réacteur nucléaire de rechercheUn réacteur nucléaire de recherche sert principalement de source de neutrons pour la recherche et développement de la filière électronucléaire par l'étude du comportement des matériaux et des combustibles nucléaires face à des sollicitations neutroniques, thermohydrauliques ou chimiques représentatives du fonctionnement en vraie grandeur d'un réacteur industriel. Un réacteur de recherche peut servir aussi à la formation des personnels de l'industrie électronucléaire, à la médecine nucléaire pour la production de radioisotopes médicaux, ou à l'industrie nucléaire militaire.
Réacteur nucléaire à sels fondusLe réacteur nucléaire à sels fondus (RSF ; molten salt reactor, MSR) est un concept de réacteur nucléaire dans lequel le combustible nucléaire se présente sous forme liquide, dissous dans du sel fondu (à ) qui joue à la fois le rôle de caloporteur et de barrière de confinement. Le réacteur peut être modéré par du graphite (produisant des neutrons thermiques) ou sans modérateur (neutrons rapides). Le concept a été étudié en laboratoire pendant les années 1960, puis délaissé dans les années 1970 faute de financement et malgré des résultats probants.
Réacteur à eau pressuriséeLe réacteur à eau pressurisée (acronyme REP), également appelé réacteur à eau sous pression ou PWR pour pressurized water reactor en anglais, est la filière de réacteurs nucléaires la plus répandue dans le monde : en , les deux tiers des 444 réacteurs nucléaires de puissance en fonctionnement dans le monde sont de technologie REP, ainsi que les navires et sous-marins nucléaires. Ce réacteur se compose de trois circuits, qui lui permettent d'utiliser l'énergie fournie par la fission des atomes d'uranium contenus dans son « cœur nucléaire ».
Indice adiabatiqueEn thermodynamique, l'indice adiabatique d'un gaz (corps pur ou mélange), aussi appelé coefficient adiabatique, exposant adiabatique ou coefficient de Laplace, noté , est défini comme le rapport de ses capacités thermiques à pression constante (isobare) et à volume constant (isochore) : Le coefficient de Laplace se définit également à partir des capacités thermiques molaires et si la transformation concerne moles de gaz, ou des capacités thermiques massiques (ou spécifiques) et si la transformation concerne