Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We study the problem of learning unknown parameters of stochastic dynamical models from data. Often, these models are high dimensional and contain several scales and complex structures. One is then interested in obtaining a reduced, coarse-grained descript ...
This paper i) compares parametric and semi-parametric representations of unobserved heterogeneity in hierarchical Bayesian logit models and ii) applies these methods to infer distributions of willingness to pay for features of shared automated vehicle (SAV ...
Higher-order asymptotics provide accurate approximations for use in parametric statistical modelling. In this thesis, we investigate using higher-order approximations in two-specific settings, with a particular emphasis on the tangent exponential model. Th ...
Covariance operators are fundamental in functional data analysis, providing the canonical means to analyse functional variation via the celebrated Karhunen-Loeve expansion. These operators may themselves be subject to variation, for instance in contexts wh ...
Spatial count data models are used to explain and predict the frequency of phenomena such as traffic accidents in geographically distinct entities such as census tracts or road segments. These models are typically estimated using Bayesian Markov chain Mont ...
Kinetic models of metabolism can be constructed to predict cellular regulation and devise metabolic engineering strategies, and various promising computational workflows have been developed in recent years for this. Due to the uncertainty in the kinetic pa ...
The spectral distribution plays a key role in the statistical modelling of multivariate extremes, as it defines the dependence structure of multivariate extreme-value distributions and characterizes the limiting distribution of the relative sizes of the co ...
Advances in computing have enabled widespread access to pose estimation, creating new sources of data streams. Unlike mock set-ups for data collection, tapping into these data streams through on-device active learning allows us to directly sample from the ...
Statistical models for extreme values are generally derived from non-degenerate probabilistic limits that can be used to approximate the distribution of events that exceed a selected high threshold. If convergence to the limit distribution is slow, then th ...
This thesis focuses on two kinds of statistical inference problems in signal processing and data science. The first problem is the estimation of a structured informative tensor from the observation of a noisy tensor in which it is buried. The structure com ...