Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
It has been considered bon ton to blame locks for their fragility, especially since researchers identified obstruction-freedom: a progress condition that precludes locking while being weak enough to raise the hope for good performance. This paper attenuates this hope by establishing lower bounds on the complexity of obstructionfree implementations in contention-free executions: those where obstruction-freedom was precisely claimed to be effective. Through our lower bounds, we argue for an inherent cost of concurrent computing without locks. We first prove that obstruction-free implementations of a large class of objects, using only overwriting or trivial primitives in contention-free executions, have Omega(n) space complexity and Omega(log^2 n) (obstruction-free) step complexity. These bounds apply to implementations of many popular objects, including variants of fetch&add, counter, compare&swap, and LL/SC. When arbitrary primitives can be applied in contention-free executions, we show that, in any implementation of binary consensus, or any perturbable object, the number of distinct base objects accessed and memory stalls incurred by some process in a contention free execution is Omega(sqrt{n}). All these results hold regardless of the behavior of processes after they become aware of contention. We also prove that, in any obstruction-free implementation of a perturbable object in which processes are not allowed to fail their operations, the number of memory stalls incurred by some process that is unaware of contention is Omega(n).
,