Publication

MR-compatible robotics to investigate human motor control

Roger Gassert
2006
Thèse EPFL
Résumé

Robotic interfaces can dynamically interact with humans performing movements and can be used to study neuromuscular adaptation. Such devices can produce computer controlled dynamics during movement and measure the interaction force and movement trajectory. On the other hand, functional magnetic resonance imaging (fMRI) can provide insight into the functional organization and plasticity of the brain. Using a robotic interface in conjunction with fMRI could allow neuroscientists to investigate the brain mechanisms of manipulation and motor learning, give therapists a tool for adaptive and patient-specific rehabilitation therapies, and assist medical doctors in functional diagnostics of motor dysfunctions. However, the MR environment imposes severe safety and electromagnetic compatibility constraints on mechatronic components, and the accessible workspace around the subject is limited. In addition, interaction with human motion must be safe and gentle. This thesis investigates the MR compatibility and performances of mechatronic elements, and develops an fMRI-compatible robotic technology consisting of sensors and actuators as well as adequate safety, control and synchronization strategies. It thus becomes possible to design various robotic systems for interaction with human motion during fMRI. This novel technology is benchmarked through the realization of several MR-compatible robotic systems which are currently being used by neuroscience groups in Japan and Europe. These include a highly MR-compatible interface for wrist motion, a tactile finger stimulation device using both intrinsically compatible and electrically powered components, as well as a two-degrees-of-freedom interface to investigate the control of multi-joint arm movements. The MR compatibility of these devices is successfully tested using a protocol developed for the particularly sensitive functional MRI sequences. In a further step towards performing multi-joint arm movements during fMRI, movement-related artifacts and biomechanical constraints are examined, and movements suitable for motor control studies are identified. Preliminary experiments with the realized systems demonstrate the potential of such robotic interfaces: the brain activation patterns during mental simulation of wrist motion are different from the patterns obtained during actual movements in interaction with the interface, and activation patterns in all conditions agree with results from literature. The well-controlled conditions as well as the recorded position and force data during fMRI open up new possibilities in data analysis and may allow new insights into the brain mechanisms involved in human motor control.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (34)
Motor skill
A motor skill is a function that involves specific movements of the body's muscles to perform a certain task. These tasks could include walking, running, or riding a bike. In order to perform this skill, the body's nervous system, muscles, and brain have to all work together. The goal of motor skill is to optimize the ability to perform the skill at the rate of success, precision, and to reduce the energy consumption required for performance. Performance is an act of executing a motor skill or task.
Contrôle moteur
En neurosciences, le contrôle moteur est la capacité de faire des ajustements posturaux dynamiques et de diriger le corps et les membres dans le but de faire un mouvement déterminé. Le mouvement volontaire est initié par le cortex moteur primaire et le cortex prémoteur. Le signal est ensuite transmis aux circuits du tronc cérébral et de la moelle épinière qui activent les muscles squelettiques qui, en se contractant, produisent un mouvement. Le mouvement produit renvoie des informations proprioceptives au système nerveux central (SNC).
Planification motrice
La planification motrice est un processus cognitif et psychomoteur, permettant d’élaborer un mouvement volontaire et de l’organiser en séquences avant de l’exécuter . Pour ce faire, avant chaque mouvement, le cerveau établit un plan moteur composé d’images mentales qui s’enchaînent . Cela est possible parce qu’il s’agit d’un automatisme qui anticipe le résultat de chaque mouvement. Lors de l’étape suivante, le cerveau spécifie les paramètres du mouvement, c’est-à-dire les éléments spatio-temporels (direction, force, amplitude, vitesse) et visuo-spatiaux qui orienteront l’action .
Afficher plus
Publications associées (90)

Non-invasive stimulation of the human striatum disrupts reinforcement learning of motor skills

Friedhelm Christoph Hummel, Takuya Morishita, Pierre Theopistos Vassiliadis, Elena Beanato, Esra Neufeld, Fabienne Windel, Maximilian Jonas Wessel, Traian Popa, Julie Duqué

Reinforcement feedback can improve motor learning, but the underlying brain mechanisms remain underexplored. In particular, the causal contribution of specific patterns of oscillatory activity within the human striatum is unknown. To address this question, ...
Nature Portfolio2024

Accelerometry as a tool for measuring the effects of transcranial magnetic stimulation

Pierre Theopistos Vassiliadis, Julie Duqué

Objective: We predicted that accelerometry would be a viable alternative to electromyography (EMG) for assessing fundamental Transcranial Magnetic Stimulation (TMS) measurements (e.g. Resting Motor Threshold (RMT), recruitment curves, latencies). New Metho ...
Elsevier2024

An objective skill assessment framework for microsurgical anastomosis based on ALI scores

Aude Billard, Kunpeng Yao, Soheil Gholami, Torstein Ragnar Meling, Anaëlle Olivia Marie Manon

IntroductionThe current assessment and standardization of microsurgical skills are subjective, posing challenges in reliable skill evaluation. We aim to address these limitations by developing a quantitative and objective framework for accurately assessing ...
Vienna2024
Afficher plus
MOOCs associés (32)
Selected chapters form winterschool on multi-scale brain
Understanding the brain requires an integrated understan­ding of different scales of organisation of the brain. This Massive Open Online Course (MOOC) will take the you through the latest data, models
Selected chapters form winterschool on multi-scale brain
Understanding the brain requires an integrated understan­ding of different scales of organisation of the brain. This Massive Open Online Course (MOOC) will take the you through the latest data, models
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.