Type énuméréEn programmation informatique, un type énuméré (appelé souvent énumération ou juste enum, parfois type énumératif ou liste énumérative) est un type de données qui consiste en un ensemble de valeurs constantes. Ces différentes valeurs représentent différents cas ; on les nomme énumérateurs. Lorsqu'une variable est de type énuméré, elle peut avoir comme valeur n'importe quel cas de ce type énuméré. Un exemple typique est la représentation de cartes à jouer ordinaires : la suite ("couleur") ainsi que la hauteur (nombre ou figure) de la carte peuvent être représentés par des énumérations.
Conteneur (informatique)En informatique, un conteneur est une structure de données, une classe, ou un type de données abstrait, dont les instances représentent des collections d'autres objets. Autrement dit, les conteneurs sont utilisés pour stocker des objets sous une forme organisée qui suit des règles d'accès spécifiques. On peut implémenter un conteneur de différentes façons, qui conduisent à des complexités en temps et en espace différentes. On choisira donc l'implémentation selon les besoins.
Analyse statique de programmesEn informatique, la notion d’analyse statique de programmes couvre une variété de méthodes utilisées pour obtenir des informations sur le comportement d'un programme lors de son exécution sans réellement l'exécuter. C'est cette dernière restriction qui distingue l'analyse statique des analyses dynamiques (comme le débugage ou le profiling) qui s'attachent, elles, au suivi de l’exécution du programme. L’analyse statique est utilisée pour repérer des erreurs formelles de programmation ou de conception et pour déterminer la facilité ou la difficulté à maintenir le code.
Enregistrement (structure de données)En programmation, un enregistrement est une structure de données qui rassemble plusieurs champs, ceux-ci contenant des valeurs qui peuvent être de types différents. Typiquement, le nombre de champ et leur séquence sont fixés. Les champs d'un enregistrement peuvent aussi être nommés "membres", en particulier dans la programmation orientée objet. Les champs peuvent encore être appelés "éléments", mais cela entraîne un risque de confusion avec les éléments d'une collection.
ArgumentationL’argumentation est l'action de convaincre et pousser ainsi l'autre à agir. Contrairement à la persuasion, elle vise à être comprise de tous et résiste à l'utilisation d'arguments fallacieux. L’argument est, en logique et en linguistique, l’ensemble des prémisses données en support à une conclusion. Une argumentation est composée d'une conclusion et d'un ou de plusieurs « éléments de preuve », que l'on appelle des prémisses ou des arguments, et qui constituent des raisons d'accepter cette conclusion.
Pure type systemNOTOC In the branches of mathematical logic known as proof theory and type theory, a pure type system (PTS), previously known as a generalized type system (GTS), is a form of typed lambda calculus that allows an arbitrary number of sorts and dependencies between any of these. The framework can be seen as a generalisation of Barendregt's lambda cube, in the sense that all corners of the cube can be represented as instances of a PTS with just two sorts. In fact, Barendregt (1991) framed his cube in this setting.
Proof (truth)A proof is sufficient evidence or a sufficient argument for the truth of a proposition. The concept applies in a variety of disciplines, with both the nature of the evidence or justification and the criteria for sufficiency being area-dependent. In the area of oral and written communication such as conversation, dialog, rhetoric, etc., a proof is a persuasive perlocutionary speech act, which demonstrates the truth of a proposition.
Sémantique des langages de programmationEn informatique théorique, la sémantique formelle (des langages de programmation) est l’étude de la signification des programmes informatiques vus en tant qu’objets mathématiques. Comme en linguistique, la sémantique, appliquée aux langages de programmation, désigne le lien entre un signifiant, le programme, et un signifié, objet mathématique. L'objet mathématique dépend des propriétés à connaître du programme. La sémantique est également le lien entre : le langage signifiant : le langage de programmation le langage signifié : logique de Hoare, automates.
Sémantique formelleEn linguistique, la sémantique formelle cherche à comprendre le sens (linguistique) en construisant des modèles mathématiques précis des principes utilisés par le locuteur pour définir la relation entre des expressions en langage naturel et l’environnement supportant un discours faisant sens. Les outils mathématiques utilisés sont une combinaison de logique mathématique et de langage formel théorique, plus particulièrement de lambda-calcul typé.
SemanticsSemantics () is the study of reference, meaning, or truth. The term can be used to refer to subfields of several distinct disciplines, including philosophy, linguistics and computer science. In English, the study of meaning in language has been known by many names that involve the Ancient Greek word σῆμα (sema, "sign, mark, token"). In 1690, a Greek rendering of the term semiotics, the interpretation of signs and symbols, finds an early allusion in John Locke's An Essay Concerning Human Understanding: The third Branch may be called σημειωτική [simeiotikí, "semiotics"], or the Doctrine of Signs, the most usual whereof being words, it is aptly enough termed also λογικὴ, Logick.