Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Carcinogenesis is commonly described as a multistage process. In a first step, a stem cell is transformed via a series of mutations into an intermediate cell having a growth advantage. Under favorable conditions, such a cell will give rise to a clone of initiated cells. Eventually, further alterations may transform a cell out of this clone into a malignant tumor cell. A mechanistic model of this process is given by the widely used two-stage clonal expansion model (TSCE). In this thesis, we take up a generalization of the TSCE, and study, how to introduce the concept of population heterogeneity into the model. We use mixture modeling, which allows to describe frailty in a biologically meaningful way. In a first part, we focus on theoretical properties of the extended model. Especially identifiability is discussed extensively. In a second part, we fit the model to human cancer incidence data. We analyze a situation, in which maximum likelihood estimation fails, and describe alternatives for statistical inference. The applications show that good fits are achieved only when the mixing distribution separates the population clearly into a large, virtually immune group, and into a small, high risk group.
Kai Johnsson, Yann Barrandon, Johannes Alexander Mosig, Thomas Michael Braschler, Ariane Rochat, Jean-Baptiste Bureau, Fahd Azzabi Zouraq, Mako Kamiya