Distributed learning is the key for enabling training of modern large-scale machine learning models, through parallelising the learning process. Collaborative learning is essential for learning from privacy-sensitive data that is distributed across various ...
We discuss two extensions to a recently introduced theory of arrays, which are based on considerations coming from the model theory of power structures. First, we discuss how the ordering relation on the index set can be expressed succinctly by referring t ...
The COVID-19 pandemic has led to a significant increase in working from home worldwide, making the workfrom-home (WFH) setting a crucial context for studying the influence of indoor environmental quality (IEQ) on workers' well-being and productivity. A nar ...
At room temperature, mechanical motion driven by the quantum backaction of light has been observed only in pioneering experiments in which an optical restoring force controls the oscillator stiffness1,2. For solid-state mechanical resonators in which oscil ...
This paper offers a new algorithm to efficiently optimize scheduling decisions for dial-a-ride problems (DARPs), including problem variants considering electric and autonomous vehicles (e-ADARPs). The scheduling heuristic, based on linear programming theor ...
The scale and pervasiveness of the Internet make it a pillar of planetary communication, industry and economy, as well as a fundamental medium for public discourse and democratic engagement. In stark contrast with the Internet's decentralized infrastructur ...
In this thesis we study stability from several viewpoints. After covering the practical importance, the rich history and the ever-growing list of manifestations of stability, we study the following. (i) (Statistical identification of stable dynamical syste ...
We present a combination technique based on mixed differences of both spatial approximations and quadrature formulae for the stochastic variables to solve efficiently a class of optimal control problems (OCPs) constrained by random partial differential equ ...
Multiple tensor-times-matrix (Multi-TTM) is a key computation in algorithms for computing and operating with the Tucker tensor decomposition, which is frequently used in multidimensional data analysis. We establish communication lower bounds that determine ...
In this paper, we propose an analytical stochastic dynamic programming (SDP) algorithm to address the optimal management problem of price-maker community energy storage. As a price-maker, energy storage smooths price differences, thus decreasing energy arb ...