Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
A novel model is presented to learn bimodally informative structures from audio-visual signals. The signal is represented as a sparse sum of audio- visual kernels. Each kernel is a bimodal function consisting of synchronous snippets of an audio waveform an ...
This article treats the problem of learning a dictionary providing sparse representations for a given signal class, via ℓ1 minimisation. The problem is to identify a dictionary \dico from a set of training samples \Y knowing that \Y=\dico\X ...
We develop an efficient learning framework to construct signal dictionaries for sparse representation by selecting the dictionary columns from multiple candidate bases. By sparse, we mean that only a few dictionary elements, compared to the ambient signal ...
With the flood of information available today the question how to deal with high dimensional data/signals, which are cumbersome to handle, to calculate with and to store, is highly important. One approach to reducing this flood is to find sparse signal rep ...
This article treats the problem of learning a dictionary providing sparse representations for a given signal class, via ℓ1-minimisation. The problem can also be seen as factorising a \ddim×\nsig matrix $Y=(y_1 \ldots y_\nsig), , y_n\in \R^\ ...
Institute of Electrical and Electronics Engineers2010
Popular transforms, like the discrete cosine transform or the wavelet transform, owe their success to the fact that they promote sparsity. These transforms are capable of extracting the structure of a large class of signals and representing them by a few t ...
This article extends the concept of it compressed sensing to signals that are not sparse in an orthonormal basis but rather in a redundant dictionary. It is shown that a matrix, which is a composition of a random matrix of certain type and a deterministic ...
We propose a new method for imaging sound speed in breast tissue from measurements obtained by ultrasound tomography (UST) scan- ners. Given the measurements, our algorithm finds a sparse image representation in an overcomplete dictionary that is adapted t ...
In this work we present a new greedy algorithm for sparse approximation called LocOMP. LocOMP is meant to be run on local dictionaries made of atoms with much shorter supports than the signal length. This notably encompasses shift-invariant dictionaries an ...
We study the use and impact of a dictionary in a tomographic reconstruction setup. First, we build two different dictionaries: one using a set of bases functions (Discrete Cosine Transform), and the other that is learned using patches extracted from traini ...
Spie-Int Soc Optical Engineering, Po Box 10, Bellingham, Wa 98227-0010 Usa2011