A simple test to check the optimality of a sparse signal approximation
Publications associées (69)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This poster is a summary of recent work published in: Spread spectrum for imaging techniques in radio interferometry, Y. Wiaux, G. Puy, Y. Boursier, and P. Vandergheynst, Mon. Not. R. Astron. Soc., 2009, Preprint arXiv:0907.0944v1. We consider the probe of ...
We consider the probe of astrophysical signals through radio interferometers with small field of view and baselines with non-negligible and constant component in the pointing direction. In this context, the visibilities measured essentially identify with a ...
We develop an efficient learning framework to construct signal dictionaries for sparse representation by selecting the dictionary columns from multiple candidate bases. By sparse, we mean that only a few dictionary elements, compared to the ambient signal ...
We introduce a new signal model, called (K,C)-sparse, to capture K-sparse signals in N dimensions whose nonzero coefficients are contained within at most C clusters, with C < K < N. In contrast to the existing work in the sparse approximation and compress ...
In this work we present a new greedy algorithm for sparse approximation called LocOMP. LocOMP is meant to be run on local dictionaries made of atoms with much shorter supports than the signal length. This notably encompasses shift-invariant dictionaries an ...
We propose a new method for imaging sound speed in breast tissue from measurements obtained by ultrasound tomography (UST) scan- ners. Given the measurements, our algorithm finds a sparse image representation in an overcomplete dictionary that is adapted t ...
We introduce the Multiplicative Update Selector and Estimator (MUSE) algorithm for sparse approximation in under-determined linear regression problems. Given ƒ = Φα* + μ, the MUSE provably and efficiently finds a k-sparse vector α̂ such that ∥Φα̂ − ƒ∥∞ ≤ ∥ ...
With the flood of information available today the question how to deal with high dimensional data/signals, which are cumbersome to handle, to calculate with and to store, is highly important. One approach to reducing this flood is to find sparse signal rep ...
This article treats the problem of learning a dictionary providing sparse representations for a given signal class, via ℓ1 minimisation. The problem is to identify a dictionary \dico from a set of training samples \Y knowing that \Y=\dico\X ...
We propose a variant of Orthogonal Matching Pursuit (OMP), called LoCOMP, for scalable sparse signal approximation. The algorithm is designed for shift- invariant signal dictionaries with localized atoms, such as time-frequency dictionaries, and achieves a ...