A Bayesian Approach to Video Expansions on Parametric Over-Complete 2-D Dictionaries
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
thumb|upright=1.2|Dictionnaire en latin constitué de plusieurs volumes, œuvre d'Egidio Forcellini (1771). Un dictionnaire est un ouvrage de référence contenant un ensemble de mots d’une langue ou d’un domaine d’activité généralement présentés par ordre alphabétique et fournissant pour chacun une définition, une explication ou une correspondance (synonyme, antonyme, cooccurrence, traduction, étymologie). Le présent article concerne les dictionnaires unilingues qui décrivent ou normalisent une langue.
La statistique bayésienne est une approche statistique fondée sur l'inférence bayésienne, où la probabilité exprime un degré de croyance en un événement. Le degré initial de croyance peut être basé sur des connaissances a priori, telles que les résultats d'expériences antérieures, ou sur des croyances personnelles concernant l'événement. La perspective bayésienne diffère d'un certain nombre d'autres interprétations de la probabilité, comme l'interprétation fréquentiste qui considère la probabilité comme la limite de la fréquence relative d'un événement après de nombreux essais.
Bayesian probability (ˈbeɪziən or ˈbeɪʒən ) is an interpretation of the concept of probability, in which, instead of frequency or propensity of some phenomenon, probability is interpreted as reasonable expectation representing a state of knowledge or as quantification of a personal belief. The Bayesian interpretation of probability can be seen as an extension of propositional logic that enables reasoning with hypotheses; that is, with propositions whose truth or falsity is unknown.
We study the computations that Bayesian agents undertake when exchanging opinions over a network. The agents act repeatedly on their private information and take myopic actions that maximize their expected utility according to a fully rational posterior be ...
Temporal point-processes are often used for mathematical modeling of sequences of discrete events with asynchronous timestamps. We focus on a class of temporal point-process models called multivariate Wold processes (MWP). These processes are well suited t ...
Bayesian statistics is concerned with the integration of new information obtained through observations with prior knowledge, and accordingly, is often related to information theory (Jospin 2022). Recursive Bayesian estimation methods, such as Kalman Filter ...