Sparse decomposition over multi-component redundant dictionaries
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
With the flood of information available today the question how to deal with high dimensional data/signals, which are cumbersome to handle, to calculate with and to store, is highly important. One approach to reducing this flood is to find sparse signal rep ...
It is well known that the support of a sparse signal can be recovered from a small number of random projections. However, in the presence of noise all known sufficient conditions require that the per-sample signal-to-noise ratio (SNR) grows without bound w ...
Ieee Service Center, 445 Hoes Lane, Po Box 1331, Piscataway, Nj 08855-1331 Usa2008
The theory of Compressive Sensing (CS) exploits a well-known concept used in signal compression – sparsity – to design new, efficient techniques for signal acquisition. CS theory states that for a length-N signal x with sparsity level K, M = O(K log(N/K)) ...
In recent years, many works on geometric image representation have appeared in the literature. Geometric video representation has not received such an important attention so far, and only some initial works in the area have been presented. Works on geometr ...
We propose a variant of Orthogonal Matching Pursuit (OMP), called LoCOMP, for scalable sparse signal approximation. The algorithm is designed for shift- invariant signal dictionaries with localized atoms, such as time-frequency dictionaries, and achieves a ...
Numerous applications demand that we manipulate large sets of very high-dimensional signals. A simple yet common example is the problem of finding those signals in a database that are closest to a query. In this paper, we tackle this problem by restricting ...
In this paper we consider recovery of a high dimensional data matrix from a set of incomplete and noisy linear measurements. We introduce a new model which can efficiently restricts the degrees of freedom of data and, at the same time, is generic so that f ...
We consider the problem of reconstruction of astrophysical signals probed by radio interferometers with baselines bearing a non-negligible component in the pointing direction. The visibilities measured essentially identify with a noisy and incomplete Fouri ...
We introduce a new signal model, called (K,C)-sparse, to capture K-sparse signals in N dimensions whose nonzero coefficients are contained within at most C clusters, with C < K < N. In contrast to the existing work in the sparse approximation and compress ...
We introduce the Multiplicative Update Selector and Estimator (MUSE) algorithm for sparse approximation in under-determined linear regression problems. Given ƒ = Φα* + μ, the MUSE provably and efficiently finds a k-sparse vector α̂ such that ∥Φα̂ − ƒ∥∞ ≤ ∥ ...