The M-Term Pursuit for Image Representation and Progressive Compression
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Demand has emerged for next generation visual technologies that go beyond conventional 2D imaging. Such technologies should capture and communicate all perceptually relevant three-dimensional information about an environment to a distant observer, providin ...
The distributed representation of correlated images is an important challenge in applications such as multi-view imaging in camera networks or low complexity video coding. This paper addresses the problem of distributed coding of images whose correlation i ...
This article treats the problem of learning a dictionary providing sparse representations for a given signal class, via ℓ1-minimisation. The problem can also be seen as factorising a \ddim×\nsig matrix $Y=(y_1 \ldots y_\nsig), , y_n\in \R^\ ...
Institute of Electrical and Electronics Engineers2010
We propose a new method for imaging sound speed in breast tissue from measurements obtained by ultrasound tomography (UST) scan- ners. Given the measurements, our algorithm finds a sparse image representation in an overcomplete dictionary that is adapted t ...
We introduce the Multiplicative Update Selector and Estimator (MUSE) algorithm for sparse approximation in under-determined linear regression problems. Given ƒ = Φα* + μ, the MUSE provably and efficiently finds a k-sparse vector α̂ such that ∥Φα̂ − ƒ∥∞ ≤ ∥ ...
In this work we present a new greedy algorithm for sparse approximation called LocOMP. LocOMP is meant to be run on local dictionaries made of atoms with much shorter supports than the signal length. This notably encompasses shift-invariant dictionaries an ...
With the flood of information available today the question how to deal with high dimensional data/signals, which are cumbersome to handle, to calculate with and to store, is highly important. One approach to reducing this flood is to find sparse signal rep ...
We develop an efficient learning framework to construct signal dictionaries for sparse representation by selecting the dictionary columns from multiple candidate bases. By sparse, we mean that only a few dictionary elements, compared to the ambient signal ...
We consider the probe of astrophysical signals through radio interferometers with small field of view and baselines with non-negligible and constant component in the pointing direction. In this context, the visibilities measured essentially identify with a ...
We develop an efficient learning framework to construct signal dictionaries for sparse representation by selecting the dictionary columns from multiple candidate bases. By sparse, we mean that only a few dictionary elements, compared to the ambient signal ...