Publication

Distributed SVM applied to image classification

Pascal Frossard, Effrosyni Kokiopoulou
2006
Article de conférence
Résumé

This paper proposes an algorithm for distributed classification, based on a SVM scheme. The contribution of each support vector is approximated by low complexity distributed thresholding over sub-dictionaries, whose union forms a redundant dictionary of atoms that spans the space of the observed signal. Redundant dictionaries allow for sparse representation of the observed signal, hence a good approximation of the support vector contributions, which is moreover robust to noise. The algorithm is applied to distributed image classification, in the context of handwritten digit recognition in a sensor network. The experimental results indicate that the proposed method is capable of achieving the same classification performance as the standard (non distributed) SVM, with an increased resiliency to noise.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.