A key challenge across many disciplines is to extract meaningful information from data which is often obscured by noise. These datasets are typically represented as large matrices. Given the current trend of ever-increasing data volumes, with datasets grow ...
We propose a local, non -intrusive model order reduction technique to accurately approximate the solution of coupled multi -component parametrized systems governed by partial differential equations. Our approach is based on the approximation of the boundar ...
Given a family of nearly commuting symmetric matrices, we consider the task of computing an orthogonal matrix that nearly diagonalizes every matrix in the family. In this paper, we propose and analyze randomized joint diagonalization (RJD) for performing t ...
We consider the problem of defining and fitting models of autoregressive time series of probability distributions on a compact interval of Double-struck capital R. An order-1 autoregressive model in this context is to be understood as a Markov chain, where ...
We propose a novel approach to evaluating the ionic Seebeck coefficient in electrolytes from relatively short equilibrium molecular dynamics simulations, based on the Green-Kubo theory of linear response and Bayesian regression analysis. By exploiting the ...
Interactions are ubiquitous in our world, spanning from social interactions between human individuals to physical interactions between robots and objects to mechanistic interactions among different components of an intelligent system. Despite their prevale ...
Given two jointly distributed random variables (X,Y), a functional representation of X is a random variable Z independent of Y, and a deterministic function g(⋅,⋅) such that X=g(Y,Z). The problem of finding a minimum entropy functional representation is kn ...
The goal of this paper is to characterize function distributions that general neural networks trained by descent algorithms (GD/SGD), can or cannot learn in polytime. The results are: (1) The paradigm of general neural networks trained by SGD is poly-time ...
The HST treasury programme BUFFALO provides extended wide-field imaging of the six Hubble Frontier Fields galaxy clusters. Here we present the combined strong and weak-lensing analysis of Abell 370, a massive cluster at z = 0.375. From the reconstructed to ...
We use generalized Ray-Knight theorems, introduced by B. Toth in 1996, together with techniques developed for excited random walks as main tools for establishing positive and negative results concerning convergence of some classes of diffusively scaled sel ...