Superconducting wireSuperconducting wires are electrical wires made of superconductive material. When cooled below their transition temperatures, they have zero electrical resistance. Most commonly, conventional superconductors such as niobium–titanium are used, but high-temperature superconductors such as YBCO are entering the market. Superconducting wire's advantages over copper or aluminum include higher maximum current densities and zero power dissipation.
Oscillation de relaxationLes oscillations de relaxation sont des oscillations non linéaires, obtenues par augmentation continue d'une contrainte, puis relâchement subit de celle-ci. Lorsque la contrainte devient trop forte, la partie résistante cède brusquement, une partie de l'énergie est évacuée, la contrainte croît à nouveau et le cycle recommence. On peut illustrer cela par un filet d'eau qui remplit un récipient articulé autour d'un axe horizontal. Lorsque le récipient est plein, il devient instable et se vide d'un coup puis revient en place.
Spin–lattice relaxationDuring nuclear magnetic resonance observations, spin–lattice relaxation is the mechanism by which the longitudinal component of the total nuclear magnetic moment vector (parallel to the constant magnetic field) exponentially relaxes from a higher energy, non-equilibrium state to thermodynamic equilibrium with its surroundings (the "lattice"). It is characterized by the spin–lattice relaxation time, a time constant known as T1.
Bascule de SchmittUne bascule de Schmitt, aussi appelée trigger de Schmitt ou bascule à seuil, est un circuit logique inventé en 1934 par Otto Schmitt, ingénieur américain. C'est une bascule à trois entrées V, SB et SH et une sortie Q. Contrairement aux autres bascules, qui sont commandées en appliquant des signaux logiques à leurs entrées, la bascule de Schmitt est conçue pour être pilotée par une tension analogique, c'est-à-dire qu'il peut prendre n'importe quelle valeur (dans l'intervalle 0 - Vcc afin de ne pas dégrader le circuit).
Function of a real variableIn mathematical analysis, and applications in geometry, applied mathematics, engineering, and natural sciences, a function of a real variable is a function whose domain is the real numbers , or a subset of that contains an interval of positive length. Most real functions that are considered and studied are differentiable in some interval. The most widely considered such functions are the real functions, which are the real-valued functions of a real variable, that is, the functions of a real variable whose codomain is the set of real numbers.