Graphe cordalthumb|Un cycle, en noir, avec deux cordes, en vert. Si l'on s'en tient à cette partie, le graphe est cordal. Supprimer l'une des arêtes vertes rendrait le graphe non cordal. En effet, l'autre arête verte formerait, avec les trois arêtes noires, un cycle de longueur 4 sans corde. En théorie des graphes, on dit qu'un graphe est cordal si chacun de ses cycles de quatre sommets ou plus possède une corde, c'est-à-dire une arête reliant deux sommets non adjacents du cycle.
Apex graphIn graph theory, a branch of mathematics, an apex graph is a graph that can be made planar by the removal of a single vertex. The deleted vertex is called an apex of the graph. It is an apex, not the apex because an apex graph may have more than one apex; for example, in the minimal nonplanar graphs K_5 or K_3,3, every vertex is an apex. The apex graphs include graphs that are themselves planar, in which case again every vertex is an apex. The null graph is also counted as an apex graph even though it has no vertex to remove.
Problème de la plus longue chaînevignette|Par suppression d'une arête rouge arbitraire, ce cycle hamiltonien donne une chaîne de longueur maximale. En théorie des graphes et en informatique théorique, le problème de la plus longue chaîne (ou le problème du plus long chemin dans le cas d'un graphe orienté) consiste à déterminer la plus longue chaîne élémentaire dans un graphe. Une chaîne est élémentaire si elle ne passe pas deux fois par le même sommet. La longueur d'une chaîne peut être mesurée par le nombre d'arêtes qui la composent ou, dans le cas de graphes pondérés, par la somme des poids des arêtes du chemin.
Branch-decompositionIn graph theory, a branch-decomposition of an undirected graph G is a hierarchical clustering of the edges of G, represented by an unrooted binary tree T with the edges of G as its leaves. Removing any edge from T partitions the edges of G into two subgraphs, and the width of the decomposition is the maximum number of shared vertices of any pair of subgraphs formed in this way. The branchwidth of G is the minimum width of any branch-decomposition of G.
Circular-arc graphIn graph theory, a circular-arc graph is the intersection graph of a set of arcs on the circle. It has one vertex for each arc in the set, and an edge between every pair of vertices corresponding to arcs that intersect. Formally, let be a set of arcs. Then the corresponding circular-arc graph is G = (V, E) where and A family of arcs that corresponds to G is called an arc model. demonstrated the first polynomial recognition algorithm for circular-arc graphs, which runs in time.
Dégénérescence (théorie des graphes)En théorie des graphes, la dégénérescence est un paramètre associé à un graphe non orienté. Un graphe est k-dégénéré si tout sous-graphe contient un nœud de degré inférieur ou égal à k, et la dégénérescence d'un graphe est le plus petit k tel qu'il est k-dégénéré. On peut de façon équivalente définir le paramètre en utilisant un ordre sur les sommets (appelé ordre de dégénérescence) tel que, pour tout sommet, le nombre d'arêtes vers des sommets plus petits dans l'ordre est au plus k. On parle alors parfois de nombre de marquage.
Graphe de PetersenLe graphe de Petersen est, en théorie des graphes, un graphe particulier possédant et . Il s'agit d'un petit graphe qui sert d'exemple et de contre-exemple pour plusieurs problèmes de la théorie des graphes. Il porte le nom du mathématicien Julius Petersen, qui l'introduisit en 1898 en tant que plus petit graphe cubique sans isthme dont les arêtes ne peuvent être colorées avec trois couleurs. Il a cependant été mentionné par Alfred Kempe pour la première fois auparavant, en 1886.
Mineur (théorie des graphes)La notion de mineur d'un graphe est un concept de théorie des graphes. Il a été défini et étudié par Robertson et Seymour dans une série d'articles intitulée Graph minors (I à XXIII), publiée dans le Journal of Combinatorial Theory entre 1983 et 2011. Soit un graphe non orienté fini. Un graphe est un mineur de s'il peut être obtenu en contractant des arêtes d'un sous-graphe de .
Hiérarchie polynomialeEn théorie de la complexité, la hiérarchie polynomiale est une hiérarchie de classes de complexité qui étend la notion de classes P, NP, co-NP. La classe PH est l'union de toutes les classes de la hiérarchie polynomiale. Il existe plusieurs définitions équivalentes des classes de la hiérarchie polynomiale. On peut définir la hiérarchie à l'aide des quantificateurs universel () et existentiel ().
Implicit graphIn the study of graph algorithms, an implicit graph representation (or more simply implicit graph) is a graph whose vertices or edges are not represented as explicit objects in a computer's memory, but rather are determined algorithmically from some other input, for example a computable function. The notion of an implicit graph is common in various search algorithms which are described in terms of graphs. In this context, an implicit graph may be defined as a set of rules to define all neighbors for any specified vertex.