Hybrid organic-inorganic metal halide perovskites (MHPs) have emerged as excellent absorber materials for next generation solar cells owing to their simple solution-processed synthesis and high efficiency. This breakthrough in photovoltaics along with an accompanying impact in light-emitting applications prompted a renaissance of interest in the broad family of MHPs. Notably, the optoelectronic properties and the photovoltaic parameters of MHPs are highly sensitive to the adopted synthetic strategy. The preparation of MHPs has commonly relied on solution-based methods requiring elevated temperatures for homogeneity of reaction mixtures. While the solution-based approach is relatively versatile, it faces challenges such as limitations in compositional engineering of MHPs or their long-term storage among others. Therefore, there is a continuous great challenge to develop efficient synthetic strategies affording various high-quality MHP materials for numerous technological optoelectronic applications.
Mohammad Khaja Nazeeruddin, Peng Gao, Paramaguru Ganesan
Christophe Ballif, Aïcha Hessler-Wyser, Antonin Faes, Jacques Levrat, Umang Bhupatrai Desai, Gianluca Cattaneo, Fahradin Mujovi, Matthieu Despeisse
Bin Ding, Xianfu Zhang, Bo Chen, Yan Liu