Mutual information eigenlips for audio-visual speech recognition
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Atypical aspects in speech concern speech that deviates from what is commonly considered normal or healthy. In this thesis, we propose novel methods for detection and analysis of these aspects, e.g. to monitor the temporary state of a speaker, diseases tha ...
This article reports on the current state of the OBI DICT project, a bilingual e-dictionary of oracle-bone inscriptions (OBI), incorporating artificial intelligence (AI) image recognition technology. It first provides a brief overview of the development of ...
State-of-the-art face recognition systems require vast amounts of labeled training data. Given the priority of privacy in face recognition applications, the data is limited to celebrity web crawls, which have issues such as limited numbers of identities. O ...
Auditory research aims in general to lead to understanding of physiological processes. By contrast, the state of the art in automatic speech processing (notably recognition) is dominated by large pre-trained models that are meant to be used as black-boxes. ...
Despite the significant progress in recent years, deep face recognition is often treated as a "black box" and has been criticized for lacking explainability. It becomes increasingly important to understand the characteristics and decisions of deep face rec ...
Modern neuroscience research is generating increasingly large datasets, from recording thousands of neurons over long timescales to behavioral recordings of animals spanning weeks, months, or even years. Despite a great variety in recording setups and expe ...
Principal component analysis (PCA) is an essential algorithm for dimensionality reduction in many data science domains. We address the problem of performing a federated PCA on private data distributed among multiple data providers while ensuring data confi ...
Hand gestures are one of the most natural and expressive way for humans to convey information, and thus hand gesture recognition has become a research hotspot in the human-machine interface (HMI) field. In particular, biological signals such as surface ele ...
Speech recognition-based applications upon the advancements in artificial intelligence play an essential role to transform most aspects of modern life. However, speech recognition in real-life conditions (e.g., in the presence of overlapping speech, varyin ...
Unsupervised Domain Adaptation Regression (DAR) aims to bridge the domain gap between a labeled source dataset and an unlabelled target dataset for regression problems. Recent works mostly focus on learning a deep feature encoder by minimizing the discrepa ...