We examine the connection of two graph parameters, the size of a minimum feedback arcs set and the acyclic disconnection. A feedback arc set of a directed graph is a subset of arcs such that after deletion the graph becomes acyclic. The acyclic disconnecti ...
Spectral algorithms are some of the main tools in optimization and inference problems on graphs. Typically, the graph is encoded as a matrix and eigenvectors and eigenvalues of the matrix are then used to solve the given graph problem. Spectral algorithms ...
This article focuses on spectral methods for recovering communities in temporal networks. In the case of fixed communities, spectral clustering on the simple time-aggregated graph (i.e., the weighted graph formed by the sum of the interactions over all tem ...
We revisit the problem max-min degree arborescence, which was introduced by Bateni et al. [STOC'09] as a central special case of the general Santa Claus problem, which constitutes a notorious open question in approximation algorithms. In the former problem ...
Graph machine learning offers a powerful framework with natural applications in scientific fields such as chemistry, biology and material sciences.
By representing data as a graph, we encode the prior knowledge that the data is composed of a set of entiti ...
In this paper, we study the problem of learning Graph Neural Networks (GNNs) with Differential Privacy (DP). We propose a novel differentially private GNN based on Aggregation Perturbation (GAP), which adds stochastic noise to the GNN's aggregation functio ...
Approximate message passing (AMP) algorithms have become an important element of high-dimensional statistical inference, mostly due to their adaptability and concentration properties, the state evolution (SE) equations. This is demonstrated by the growing ...
A graph H is a minor of a second graph G if G can be transformed into H by two operations: 1) deleting nodes and/or edges, or 2) contracting edges. Coarse-grained reconfigurable array (CGRA) application mapping is closely related to the graph minor problem ...
We study the performance of Markov chains for the q-state ferromagnetic Potts model on random regular graphs. While the cases of the grid and the complete graph are by now well-understood, the case of random regular graphs has resisted a detailed analysis ...
When can a unimodular random planar graph be drawn in the Euclidean or the hyperbolic plane in a way that the distribution of the random drawing is isometry-invariant? This question was answered for one-ended unimodular graphs in Benjamini and Timar, using ...