Probabilistic graphical models for human interaction analysis
Publications associées (58)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this master thesis, multi-agent reinforcement learning is used to teach robots to build a self-supporting structure connecting two points. To accomplish this task, a physics simulator is first designed using linear programming. Then, the task of buildin ...
Machine learning has become the state of the art for the solution of the diverse inverse problems arising from computer vision and medical imaging, e.g. denoising, super-resolution, de-blurring, reconstruction from scanner data, quantitative magnetic reson ...
Designing novel materials is greatly dependent on understanding the design principles, physical mechanisms, and modeling methods of material microstructures, requiring experienced designers with expertise and several rounds of trial and error. Although rec ...
The ability to forecast human motion, called ``human trajectory forecasting", is a critical requirement for mobility applications such as autonomous driving and robot navigation. Humans plan their path taking into account what might happen in the future. S ...
We exhibit an unambiguous k-DNF formula that requires CNF width (Omega) over tilde (k(2)), which is optimal up to logarithmic factors. As a consequence, we get a near-optimal solution to the Alon-Saks-Seymour problem in graph theory (posed in 1991), which ...
Learning-based outlier (mismatched correspondence) rejection for robust 3D registration generally formulates the outlier removal as an inlier/outlier classification problem. The core for this to be successful is to learn the discriminative inlier/outlier f ...
Most network data are collected from partially observable networks with both missing nodes and missing edges, for example, due to limited resources and privacy settings specified by users on social media. Thus, it stands to reason that inferring the missin ...
This work studies the class of algorithms for learning with side-information that emerges by extending generative models with embedded context-related variables. Using finite mixture models (FMMs) as the prototypical Bayesian network, we show that maximum- ...
Modern machine learning tools have shown promise in detecting symptoms of neurological disorders. However, current approaches typically train a unique classifier for each subject. This subject-specific training scheme requires long labeled recordings from ...
IEEE2021
Over the past few years, there have been fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. The amount of annotated data drastically increased and supervised deep discriminative models exceed ...